
December 2007 Rev 2 1/88

1

SN260

ZigBee® 802.15.4 network processor

Features
■ Integrated 2.4GHz, IEEE 802.15.4-compliant

transceiver:
– Robust RX filtering allows co-existence

with IEEE 802.11g and Bluetooth devices
– - 97.5dBm RX sensitivity (1% PER, 20byte

packet)
– + 3dBm nominal output power
– Increased radio performance mode (boost

mode) gives –98.5dBm sensitivity and
+5dBm transmit power

– Integrated VCO and loop filter
– Secondary TX-only RF port for applications

requiring external PA.

■ Integrated IEEE 802.15.4 PHY and MAC

■ Dedicated peripherals and integrated memory

■ EmberZNet™ ZigBee®-compliant stack
running on the dedicated network processor

■ Controlled by the Host using the EmberZNet™
Serial Protocol (EZSP)
– Standard serial interface (allows for

connection to a variety of Host micro
controllers)

■ Non-intrusive debug interface (SIF)

■ Integrated hardware and software support for
InSight Development Environment

■ Provides integrated RC oscillator for low power
operation

■ Three sleep modes:
– Processor idle (automatic)
– Deep sleep—1.0µA
– Power down—1.0µA

■ Watchdog timer and power-on-reset circuitry

■ Integrated AES encryption accelerator

■ Integrated 1.8V voltage regulator

■ Compatible with Ember EM250

Always
powered

PacketTrace

 ADCRF_P,N

Integrated Flash and RAM

SIF_MISO

HF OSC

SIF

Internal
RC-OSC

IO ControllerChip
manager

Regulator

Bias

Interrupt
Controller

RF_TX_ALT_P,N

OSCA

OSCB

SIF_MOSI

SIF_CLK

nSIF_LOAD

Encryption acclerator

IF

Network
Processor
(XAP2b)

VREG_OUT Watchdog

PA select

LNA

PA

PA
DAC

MAC
+

Baseband

TX_ACTIVE

Sleep
timer

BIAS_R

POR

Network Processor
Peripherals

Serial
Controller

SYNTH

SC
LK

M
IS

O

M
O

SI

nS
SE

L

LI
N

K
_A

C
TI

V
IT

Y

nH
O

ST
_I

N
T

nW
AK

E

nRESET

nS
SE

L_
IN

T

PT
I_

EN

P
TI

_D
AT

A

S
D

B
G

www.st.com

http://www.st.com

Contents SN260

2/88

Contents

1 General description . 5

2 Pin assignment . 6

3 Top-level functional description . 8

4 Electrical characteristics . 10

4.1 Absolute maximum ratings . 10

4.2 Recommended operating conditions . 10

4.3 Environmental characteristics . 11

4.4 DC electrical characteristics . 11

4.5 Digital I/O specifications . 12

4.6 RF electrical characteristics . 13

4.6.1 Receive . 13

4.6.2 Transmit . 14

4.6.3 Synthesizer . 14

5 Functional description . 15

5.1 Receive (RX) path . 15

5.1.1 RX baseband . 15

5.1.2 RSSI and CCA . 15

5.2 Transmit (TX) path . 16

5.2.1 TX baseband . 16

5.2.2 TX_ACTIVE signal . 16

5.3 Integrated MAC module . 16

5.4 Packet trace interface (PTI) . 17

5.5 16-bit microprocessor . 17

5.6 Embedded memory . 17

5.6.1 Simulated EEPROM . 18

5.6.2 Flash information area (FIA) . 18

5.7 Encryption accelerator . 18

5.8 Reset detection . 19

5.9 Power-on-reset (POR) . 19

SN260 Contents

 3/88

5.10 Clock sources . 19

5.10.1 High-frequency crystal oscillator . 19

5.10.2 Internal RC oscillator . 20

5.11 Random number generator . 21

5.12 Watchdog timer . 21

5.13 Sleep timer . 21

5.14 Power management . 21

6 SPI protocol . 22

6.1 Physical interface configuration . 22

6.2 SPI transaction . 22

6.2.1 Command section . 23

6.2.2 Wait section . 23

6.2.3 Response section . 23

6.2.4 Asynchronous signaling . 23

6.2.5 Spacing . 24

6.2.6 Waking the SN260 from sleep . 24

6.2.7 Error conditions . 25

6.3 SPI protocol timing . 25

6.4 Data format . 26

6.5 SPI byte . 27

6.5.1 Primary SPI bytes . 28

6.5.2 Special response bytes . 28

6.6 Powering on, power cycling, and rebooting . 29

6.6.1 Unexpected resets . 29

6.7 Transaction examples . 29

6.7.1 SPI protocol version . 30

6.7.2 EmberZNet serial protocol frame — NOP command 30

6.7.3 SN260 reset . 31

6.7.4 Three-part transaction: Wake, Get Version, Stack Status Callback 32

7 EmberZNet serial protocol . 34

7.1 Byte order . 34

7.2 Conceptual overview . 34

7.2.1 Stack configuration . 34

7.2.2 Policy settings . 36

Contents SN260

4/88

7.2.3 Datagram replies . 36

7.2.4 Callbacks . 36

7.2.5 Power management . 37

7.2.6 Tokens . 37

7.2.7 RAM . 37

7.2.8 SN260 status . 38

7.2.9 Random number generator . 38

7.3 Protocol format . 38

7.3.1 Type definitions . 40

7.3.2 Structure definitions . 41

7.3.3 Named values . 42

7.3.4 Configuration frames . 51

7.3.5 Utilities frames . 53

7.3.6 Networking frames . 57

7.3.7 Binding frames . 65

7.3.8 Messaging frames . 68

7.3.9 Alphabetical list of frames . 76

7.4 Sample transactions . 78

7.4.1 Joining . 78

7.4.2 Binding . 79

7.4.3 Sending . 79

7.4.4 Receiving . 80

8 SIF module programming and debug interface 81

9 Typical application . 82

10 Mechanical details . 84

11 Ordering information . 85

12 Abbreviations and acronyms . 86

13 References . 87

14 Revision history . 87

SN260 General description

 5/88

1 General description

The SN260 integrates a 2.4GHz, IEEE 802.15.4-compliant transceiver with a 16-bit network
processor (XAP2b core) to run EmberZNet, the ZigBee-compliant network stack. The
SN260 exposes access to the EmberZNet API across a standard SPI module, allowing
application development on a Host processor. This means that the SN260 can be viewed as
a ZigBee peripheral connected over a SPI. The XAP2b microprocessor is a power-optimized
core integrated in the SN260. It contains integrated Flash and RAM memory along with an
optimized peripheral set to enhance the operation of the network stack.

The transceiver utilizes an efficient architecture that exceeds the dynamic range
requirements imposed by the IEEE 802.15.4-2003 standard by over 15dB. The integrated
receive channel filtering allows for co-existence with other communication standards in the
2.4GHz spectrum such as IEEE 802.11g and Bluetooth. The integrated regulator, VCO, loop
filter, and power amplifier keep the external component count low. An optional high-
performance radio mode (boost mode) is software selectable to boost dynamic range by a
further 3dB.

The SN260 contains embedded Flash and integrated RAM for program and data storage.
By employing an effective wear-leveling algorithm, the stack optimizes the lifetime of the
embedded Flash, and affords the application the ability to configure stack and application
tokens within the SN260.

To maintain the strict timing requirements imposed by ZigBee and the IEEE 802.15.4-2003
standard, the SN260 integrates a number of MAC functions into the hardware. The MAC
hardware handles automatic ACK transmission and reception, automatic backoff delay, and
clear channel assessment for transmission, as well as automatic filtering of received
packets. In addition, the SN260 allows for true MAC level debugging by integrating the
Packet Trace Interface.

An integrated voltage regulator, power-on-reset circuitry, sleep timer, and low-power sleep
modes are available. The deep sleep and power down modes draws less than 1 µA,
allowing products to achieve long battery life.

Finally, the SN260 utilizes the non-intrusive SIF module for powerful software debugging
and programming of the network processor.

Target applications for the SN260 include:

● Building automation and control

● Home automation and control

● Home entertainment control

● Asset tracking

The SN260 can only be purchased with the EmberZNet stack. This technical datasheet
details the SN260 features available to customers using it with the EmberZNet stack.

Pin assignment SN260

6/88

2 Pin assignment

Figure 1. SN260 pin assignment

V D D _ V C O

R F _ P

V D D _ R F

R F _ N

R F _ T X _ A L T _ P

R F _ T X _ A L T _ N

V D D _ IF

B IA S _ R

V D D _ P A D S A

T X _ A C T IV E

n S IF _ L O A D

S IF _ M O S I

S IF _ M IS O

S IF _ C L K

n H O S T _ IN T

R E S

V D D _ P A D S

P T I_ D A T A

P T I_ E N

n S S E L
G

N
D

V
D

D
_F

LA
S

H

S
D

B
G

LI
N

K
_A

C
TI

V
IT

Y

nW
A

K
E

V
D

D
_C

O
R

E

V
D

D
_S

Y
N

TH
_P

R
E

O
S

C
B

O
S

C
A

V
D

D
_2

4M
H

Z

S
C

LK

M
IS

O

M
O

SI

nS
SE

L_
IN

T

V
D

D
_C

O
R

E

V
D

D
_P

A
D

S

nR
E

S
E

T

V
D

D
_P

A
D

S

V
R

E
G

_O
U

T

R
E

S

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

1 0

9

8

7

6

5

4

3

2

1

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

4 0 3 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1

4 1
G N D

E M 2 6 0SN260

Table 1. Pin descriptions

Pin # Signal Direction Description

1 VDD_VCO Power 1.8V VCO supply

2 RF_P I/O Differential (with RF_N) receiver input/transmitter output

3 RF_N I/O Differential (with RF_P) receiver input/transmitter output

4 VDD_RF Power 1.8V RF supply (LNA and PA)

5 RF_TX_ALT_P O Differential (with RF_TX_ALT_N) transmitter output (optional)

6 RF_TX_ALT_N O Differential (with RF_TX_ALT_P) transmitter output (optional)

7 VDD_IF Power 1.8V IF supply (mixers and filters)

8 BIAS_R I Bias setting resistor

9 VDD_PADSA Power Analog pad supply (1.8V)

10 TX_ACTIVE O
Logic-level control for external RX/TX switch
The SN260 baseband controls TX_ACTIVE and drives it high (1.8V)
when in TX mode. (Refer to Table 6 and section TX_ACTIVE signal.)

SN260 Pin assignment

 7/88

11 nRESET I Active low chip reset (internal pull-up)

12 VREG_OUT Power Regulator output (1.8V)

13 VDD_PADS Power Pads supply (2.1 – 3.6V)

14 VDD_CORE Power 1.8V digital core supply

15 nSSEL_INT I
SPI Slave Select Interrupt (from Host to SN260)

This signal must be connected to nSSEL (Pin 21)

16 RES Reserved for future use, do not connect to any signal.

17 MOSI I SPI Data, Master Out / Slave In (from Host to SN260)

18 MISO O SPI Data, Master In / Slave Out (from SN260 to Host)

19 VDD_PADS Power Pads supply (2.1 – 3.6V)

20 SCLK I SPI Clock (from Host to SN260)

21 nSSEL I SPI Slave Select (from Host to SN260)

22 PTI_EN O Frame signal of Packet Trace Interface (PTI)

23 PTI_DATA O Data signal of Packet Trace Interface (PTI)

24 VDD_PADS Power Pads supply (2.1 – 3.6V)

25 RES Reserved for future use, do not connect to any signal.

26 nHOST_INT O Host Interrupt signal (from SN260 to Host)

27 SIF_CLK I Serial Interface, Clock (internal pull down)

28 SIF_MISO O Serial Interface, Master In / Slave Out

29 SIF_MOSI I Serial Interface, Master Out / Slave In

30 nSIF_LOAD I/O Serial Interface, load strobe (open collector with internal pull up)

31 GND Power Ground Supply

32 VDD_FLASH Power 1.8V Flash memory supply

33 SDBG O Spare Debug signal

34 LINK_ACTIVITY O Link and Activity signal

35 nWAKE I Wake Interrupt signal (from Host to SN260)

36 VDD_CORE Power 1.8V digital core supply

37 VDD_SYNTH_PRE Power 1.8V synthesizer and pre-scalar supply

38 OSCB I/O
24MHz crystal oscillator or left open for when using an external clock
input on OSCA

39 OSCA I/O 24MHz crystal oscillator or external clock input

40 VDD_24MHZ Power 1.8V high-frequency oscillator supply

41 GND Ground
Ground supply pad in the bottom center of the package forms Pin 41
(see the EM260 Reference Design for PCB considerations)

Table 1. Pin descriptions (continued)

Pin # Signal Direction Description

Top-level functional description SN260

8/88

3 Top-level functional description

Figure 2 shows a detailed block diagram of the SN260.

Figure 2. SN260 block diagram

The radio receiver is a low-IF, super-heterodyne receiver. It utilizes differential signal paths
to minimize noise interference, and its architecture has been chosen to optimize co-
existence with other devices within the 2.4GHz band (namely, IEEE 802.11g and Bluetooth).
After amplification and mixing, the signal is filtered and combined prior to being sampled by
an ADC.

The digital receiver implements a coherent demodulator to generate a chip stream for the
hardware-based MAC. In addition, the digital receiver contains the analog radio calibration
routines and control of the gain within the receiver path.

The radio transmitter utilizes an efficient architecture in which the data stream directly
modulates the VCO. An integrated PA boosts the output power. The calibration of the TX
path as well as the output power is controlled by digital logic. If the SN260 is to be used with
an external PA, the TX_ACTIVE signal should be used to control the timing of the external
switching logic.

The integrated 4.8GHz VCO and loop filter minimize off-chip circuitry. Only a 24MHz crystal
with its loading capacitors is required to properly establish the PLL reference signal.

The MAC interfaces the data memory to the RX and TX baseband modules. The MAC
provides hardware-based IEEE 802.15.4 packet-level filtering. It supplies an accurate
symbol time base that minimizes the synchronization effort of the software stack and meets
the protocol timing requirements. In addition, it provides timer and synchronization
assistance for the IEEE 802.15.4 CSMA-CA algorithm.

Always
powered

PacketTrace

 ADCRF_P,N

Integrated Flash and RAM

SIF_MISO

HF OSC

SIF

Internal
RC-OSC

IO ControllerChip
manager

Regulator

Bias

Interrupt
Controller

RF_TX_ALT_P,N

OSCA

OSCB

SIF_MOSI

SIF_CLK

nSIF_LOAD

Encryption acclerator

IF

Network
Processor
(XAP2b)

VREG_OUT Watchdog

PA select

LNA

PA

PA
DAC

MAC
+

Baseband

TX_ACTIVE

Sleep
timer

BIAS_R

POR

Network Processor
Peripherals

Serial
Controller

SYNTH

SC
LK

M
IS

O

M
O

SI

nS
SE

L

LI
N

K
_A

C
TI

V
IT

Y

nH
O

ST
_I

N
T

nW
AK

E

nRESET

nS
SE

L_
IN

T

PT
I_

EN

P
TI

_D
AT

A

S
D

B
G

SN260 Top-level functional description

 9/88

The SN260 integrates hardware support for a Packet Trace module, which allows robust
packet-based debug. This element is a critical component of InSight Desktop, the Ember
software IDE, providing advanced network debug capability when coupled with the InSight
Adapter.

The SN260 integrates a 16-bit XAP2b microprocessor developed by Cambridge
Consultants Ltd. This power-efficient, industry-proven core provides the appropriate level of
processing power to meet the needs of the EmberZNet Zigbee-compliant stack,
EmberZNet. In addition, the SIF module provides a non-intrusive programming and debug
interface allowing for real-time application debugging.

The SN260 exposes the EmberZNet Serial API over the SPI, which allows application
development to occur on a Host micro controller of choice. In addition to the four SPI
signals, two additional signals, nHOST_INT and nWAKE, provide an easy-to-use
handshake mechanism between the Host and the SN260.

The integrated voltage regulator generates a regulated 1.8V reference voltage from an
unregulated supply voltage. This voltage is decoupled and routed externally to supply the
1.8V to the core logic. In addition, an integrated POR module allows for the proper cold start
of the SN260.

The SN260 contains one high-frequency (24MHz) crystal oscillator and, for low-power
operation, a second low-frequency internal 10 kHz oscillator.

The SN260 contains two power domains. The always-powered high voltage supply is used
for powering the GPIO pads and critical chip functions. The rest of the chip is powered by a
regulated Low Voltage Supply which can be disabled during deep sleep to reduce the power
consumption.

Electrical characteristics SN260

10/88

4 Electrical characteristics

4.1 Absolute maximum ratings
Table 2 lists the absolute maximum ratings for the SN260.

4.2 Recommended operating conditions
Table 3 lists the rated operating conditions of the SN260.

Table 2. Absolute maximum ratings

Parameter Test conditions Min. Max. Unit

Regulator voltage (VDD_PADS) - 0.3 3.6 V

Core voltage (VDD_24MHZ, VDD_VCO,
VDD_RF, VDD_IF, VDD_PADSA, VDD_FLASH,
VDD_SYNTH_PRE, VDD_CORE)

- 0.3 2.0 V

Voltage on RF_P,N; RF_TX_ALT_P,N - 0.3 3.6 V

Voltage on nSSEL_INT, MOSI, MISO, SCLK,
nSSEL, PTI_EN, PTI_DATA, nHOST_INT,
SIF_CLK, SIF_MISO, SIF_MOSI, nSIF_LOAD,
SDBG, LINK_ACTIVITY, nWAKE, nRESET,
VREG_OUT

- 0.3 VDD_PADS+0.3 V

Voltage on TX_ACTIVE, BIAS_R, OSCA, OSCB - 0.3 VDD_CORE+0.3 V

Storage temperature - 40 + 140 °C

Table 3. Operating conditions

Parameter Test conditions Min. Typ. Max. Unit

Regulator input voltage (VDD_PADS) 2.1 3.6 V

Core input voltage (VDD_24MHZ, VDD_VCO,
VDD_RF, VDD_IF, VDD_PADSA, VDD_FLASH,
VDD_SYNTH_PRE, VDD_CORE)

1.7 1.8 1.9 V

Temperature range - 40 + 85 °C

SN260 Electrical characteristics

 11/88

4.3 Environmental characteristics
Table 4 lists the environmental characteristics of the SN260.

4.4 DC electrical characteristics
Table 5 lists the DC electrical characteristics of the SN260.

Table 4. Environmental characteristics

Parameter Test Conditions Min. Typ. Max. Unit

ESD (human body model) On any pin - 2 + 2 kV

ESD (charged device model) Non-RF pins - 400 + 400 V

ESD (charged device model) RF pins - 225 + 225 V

MSL (moisture sensitivity level) TBD

Table 5. DC characteristics

Parameter Test Conditions Min. Typ. Max. Unit

Regulator input voltage (VDD_PADS) 2.1 3.6 V

Power supply range (VDD_CORE) Regulator output or external input 1.7 1.8 1.9 V

Deep sleep current

Quiescent current, including internal RC
oscillator

At 25° C 1.0 μA

RX current

Radio receiver, MAC, and baseband
(boost mode)

29.0 mA

Radio receiver, MAC, and baseband 27.0 mA

CPU, RAM, and Flash memory At 25° C and 1.8V core 8.5 mA

Total RX current
(= IRadio receiver, MAC and baseband, CPU +
IRAM, and Flash memory)

At 25° C, VDD_PADS = 3.0V 35.5 mA

TX current

Radio transmitter, MAC, and baseband
(boost mode)

At max. TX power (+ 5dBm typical) 33.0 mA

Radio transmitter, MAC, and baseband At max. TX power (+ 3dBm typical) 27.0 mA

At 0dBm typical 24.3 mA

At min. TX power (- 32dBm typical) 19.5 mA

CPU, RAM, and Flash memory At 25° C, VDD_PADS = 3.0V 8.5 mA

Total TX current
(= IRadio transmitter, MAC and baseband, CPU +
IRAM, and Flash memory)

At 25° C and 1.8V core; max.
power out

35.5 mA

Electrical characteristics SN260

12/88

4.5 Digital I/O specifications
Table 6 contains the digital I/O specifications for the SN260. The digital I/O power (named
VDD_PADS) comes from three dedicated pins (pins 13, 19, and 24). The voltage applied to
these pins sets the I/O voltage.

Table 6. Digital I/O specifications

Parameter Name Min. Typ. Max. Unit

Voltage supply VDD_PADS 2.1 3.6 V

Input voltage for logic 0 VIL 0 0.2 x VDD_PADS V

Input voltage for logic 1 VIH 0.8 x VDD_PADS VDD_PADS V

Input current for logic 0 IIL -0.5 A

Input current for logic 1 IIH 0.5 A

Input pull-up resistor value RIPU 30 kΩ

Input pull-down resistor value RIPD 30 kΩ

Output voltage for logic 0 VOL 0 0.18 x VDD_PADS V

Output voltage for logic 1 VOH 0.82 x VDD_PADS VDD_PADS V

Output source current (standard current
pad)

IOHS 4 mA

Output sink current (standard current
pad)

IOLS 4 mA

Output source current (high current pad:
pins 33, 34, and 35)

IOHH 8 mA

Output sink current (high current pad:
pins 33, 34, and 35)

IOLH 8 mA

Total output current (for I/O pads) IOH + IOL 40 mA

Input voltage threshold for OSCA 0.2 x VDD_CORE 0.8 x VDD_PADS V

Output voltage level (TX_ACTIVE) 0.18 x VDD_CORE 0.82 x VDD_CORE V

Output source current (TX_ACTIVE) 1 mA

SN260 Electrical characteristics

 13/88

4.6 RF electrical characteristics

4.6.1 Receive

Table 7 lists the key parameters of the integrated IEEE 802.15.4 receiver on the SN260.

Note: Receive measurements were collected with Ember’s EM260 reference design at 2440MHz.
The Typical number indicates one standard deviation above the mean.

Table 7. Receive characteristics

Parameter Test conditions Min. Typ. Max. Unit

Frequency range 2400 2500 MHz

Sensitivity (boost mode)
1% PER, 20byte packet defined by
IEEE 802.15.4

- 93 - 98.5 dBm

Sensitivity
1% PER, 20byte packet defined by
IEEE 802.15.4

- 92 - 97.5 dBm

High-side adjacent channel rejection IEEE 802.15.4 signal at -82dBm 35 dB

Low-side adjacent channel rejection IEEE 802.15.4 signal at - 82dBm 35 dB

2nd high-side adjacent channel rejection IEEE 802.15.4 signal at - 82dBm 40 dB

2nd low-side adjacent channel rejection IEEE 802.15.4 signal at - 82dBm 40 dB

Channel rejection for all other channels IEEE 802.15.4 signal at - 82dBm 40 dB

802.11g rejection centered at + 12MHz or
- 13MHz

IEEE 802.15.4 signal at - 82dBm 40 dB

Maximum input signal level for correct
operation (low gain)

0 dBm

Image suppression 30 dB

Co-channel rejection IEEE 802.15.4 signal at - 82dBm - 6 dBc

Relative frequency error

(2 x 40 ppm required by IEEE 802.15.4)
- 120 + 120 ppm

Relative timing error

(2 x 40 ppm required by IEEE 802.15.4)
- 120 + 120 ppm

Linear RSSI range 40 dB

Electrical characteristics SN260

14/88

4.6.2 Transmit

Table 8 lists the key parameters of the integrated IEEE 802.15.4 transmitter on the SN260.

Note: Transmit measurements were collected with Ember’s EM260 reference design at 2440MHz.
The Typical number indicates one standard deviation below the mean.

4.6.3 Synthesizer

Table 9 lists the key parameters of the integrated synthesizer on the SN260.

Table 8. Transmit characteristics

Parameter Test conditions Min. Typ. Max. Unit

Maximum output power (boost mode) At highest power setting 5 dBm

Maximum output power At highest power setting 0 3 dBm

Minimum output power At lowest power setting - 32 dBm

Error vector magnitude
As defined by IEEE 802.15.4,
which sets a 35% maximum

15 25 %

Carrier frequency error - 40 + 40 ppm

Load impedance 200

PSD mask relative 3.5MHz away - 20 dB

PSD mask absolute 3.5MHz away - 30 dBm

Table 9. Synthesizer characteristics

Parameter Test conditions Min. Typ. Max. Unit

Frequency range 2400 2500 MHz

Frequency resolution 11.7 kHz

Lock time From off, with correct VCO DAC setting 100 s

Relock time
Channel change or RX/TX turnaround (IEEE
802.15.4 defines 192s turnaround time)

100 s

Phase noise at 100kHz - 71 dBc/Hz

Phase noise at 1MHz - 91 dBc/Hz

Phase noise at 4MHz - 103 dBc/Hz

Phase noise at 10MHz - 111 dBc/Hz

SN260 Functional description

 15/88

5 Functional description

The SN260 connects to the Host micro controller through a standard SPI interface. The
EmberZNet Serial Protocol (EZSP) has been defined to allow an application to be written on
a host micro controller of choice. Therefore, the SN260 comes with a license to EmberZNet,
the EmberZNet ZigBee-compliant software stack. The following brief description of the
hardware modules provides the necessary background on the operation of the SN260. For
more information, contact your local ST sales representative.

5.1 Receive (RX) path
The SN260 RX path spans the analog and digital domains. The RX architecture is based on
a low-IF, super-heterodyne receiver. It utilizes differential signal paths to minimize noise
interference. The input RF signal is mixed down to the IF frequency of 4MHz by I and Q
mixers. The output of the mixers is filtered and combined prior to being sampled by a
12Msps ADC. The RX filtering within the RX path has been designed to optimize the co-
existence of the SN260 with other 2.4GHz transceivers, such as the IEEE 802.11g and
Bluetooth.

5.1.1 RX baseband

The SN260 RX baseband (within the digital domain) implements a coherent demodulator for
optimal performance. The baseband demodulates the O-QPSK signal at the chip level and
synchronizes with the IEEE 802.15.4-2003 preamble. Once a packet preamble is detected,
it de-spreads the demodulated data into 4-bit symbols. These symbols are buffered and
passed to the hardware-based MAC module for filtering.

In addition, the RX baseband provides the calibration and control interface to the analog RX
modules, including the LNA, RX Baseband Filter, and modulation modules. The EmberZNet
software includes calibration algorithms which use this interface to reduce the effects of
process and temperature variation.

5.1.2 RSSI and CCA

The SN260 calculates the RSSI over an 8-symbol period as well as at the end of a received
packet. It utilizes the RX gain settings and the output level of the ADC within its algorithm.

The SN260 RX baseband provides support for the IEEE 802.15.4-2003 required CCA
methods summarized in Table 10. Modes 1, 2, and 3 are defined by the 802.15.4-2003
standard; Mode 0 is a proprietary mode.

Table 10. CCA mode behavior

CCA mode Mode behavior

0
Clear channel reports busy medium if either carrier sense OR RSSI exceeds their
thresholds.

1 Clear channel reports busy medium if RSSI exceeds its threshold.

2 Clear channel reports busy medium if carrier sense exceeds its threshold.

3
Clear channel reports busy medium if both RSSI and carrier sense exceed their
thresholds.

Functional description SN260

16/88

5.2 Transmit (TX) path
The SN260 transmitter utilizes both analog circuitry and digital logic to produce the O-QPSK
modulated signal. The area-efficient TX architecture directly modulates the spread symbols
prior to transmission. The differential signal paths increase noise immunity and provide a
common interface for the external balun.

5.2.1 TX baseband

The SN260 TX baseband (within the digital domain) performs the spreading of the 4-bit
symbol into its IEEE 802.15.4-2003-defined 32-chip I and Q sequence. In addition, it
provides the interface for software to perform the calibration of the TX module in order to
reduce process, temperature, and voltage variations.

5.2.2 TX_ACTIVE signal

Even though the SN260 provides an output power suitable for most ZigBee applications,
some applications will require an external power amplifier (PA). Due to the timing
requirements of IEEE 802.15.4-2003, the SN250 provides a signal, TX_ACTIVE, to be used
for external PA power management and RF Switching logic. When in TX, the TX Baseband
drives TX_ACTIVE high (as described inTable 6). When in RX, the TX_ACTIVE signal is
low. If an external PA is not required, then the TX_ACTIVE signal should be connected to
GND through a 100k Ohm resistor, as shown in the application circuit in Figure 12.

5.3 Integrated MAC module
The SN260 integrates critical portions of the IEEE 802.15.4-2003 MAC requirements in
hardware. This allows the SN260 to provide greater bandwidth to application and network
operations. In addition, the hardware acts as a first-line filter for non-intended packets. The
SN260 MAC utilizes a DMA interface to RAM memory to further reduce the overall micro
controller interaction when transmitting or receiving packets.

When a packet is ready for transmission, the software configures the TX MAC DMA by
indicating the packet buffer RAM location. The MAC waits for the backoff period, then
transitions the baseband to TX mode and performs channel assessment. When the channel
is clear, the MAC reads data from the RAM buffer, calculates the CRC, and provides 4-bit
symbols to the baseband. When the final byte has been read and sent to the baseband, the
CRC remainder is read and transmitted.

The MAC resides in RX mode most of the time, and different format and address filters keep
non-intended packets from using excessive RAM buffers, as well as preventing the SN260
CPU from being interrupted. When the reception of a packet begins, the MAC reads 4-bit
symbols from the baseband and calculates the CRC. It assembles the received data for
storage in a RAM buffer. A RX MAC DMA provides direct access to the RAM memory. Once
the packet has been received, additional data is appended to the end of the packet in the
RAM buffer space. The appended data provides statistical information on the packet for the
software stack.

SN260 Functional description

 17/88

The primary features of the MAC are:

● CRC generation, appending, and checking

● Hardware timers and interrupts to achieve the MAC symbol timing

● Automatic preamble, and SFD pre-pended to a TX packet

● Address recognition and packet filtering on received packets

● Automatic acknowledgement transmission

● Automatic transmission of packets from memory

● Automatic transmission after backoff time if channel is clear (CCA)

● Automatic acknowledgement checking

● Time stamping of received and transmitted messages

● Attaching packet information to received packets (LQI, RSSI, gain, time stamp, and
packet status)

● IEEE 802.15.4-2003 timing and slotted/unslotted timing

5.4 Packet trace interface (PTI)
The SN260 integrates a true PHY-level PTI for effective network-level debugging. This two-
signal interface monitors all the PHY TX and RX packets (in a non-intrusive manner)
between the MAC and baseband modules. It is an asynchronous 500kbps interface and
cannot be used to inject packets into the PHY/MAC interface. The two signals from the
SN260 are the frame signal (PTI_EN) and the data signal (PTI_DATA). The PTI is supported
by InSight Desktop.

5.5 16-bit microprocessor
The SN260 integrates the XAP2b microprocessor developed by Cambridge Consultants
Ltd., making it a true network processor solution. The XAP2b is a 16-bit Harvard
architecture processor with separate program and data address spaces. The word width is
16 bits for both the program and data sides.

The standard XAP2 microprocessor and accompanying software tools have been enhanced
to create the XAP2b microprocessor used in the SN260. The XAP2b adds data-side byte
addressing support to the XAP2 allowing for more productive usage of RAM and optimized
code.

The XAP2b clock speed is 12MHz. When used with the EmberZNet stack, firmware is
loaded into Flash memory over the air or by a serial link using a built-in bootloader in a
reserved area of the Flash. Alternatively, firmware may be loaded via the SIF interface with
the assistance of RAM-based utility routines also loaded via SIF.

5.6 Embedded memory
The SN260 contains embedded Flash and RAM memory for firmware storage and
execution. In addition it partitions a portion of the Flash for simulated EEPROM and token
storage.

Functional description SN260

18/88

5.6.1 Simulated EEPROM

The protocol stack reserves a section of Flash memory to provide simulated EEPROM
storage area for stack and customer tokens. The Flash cell has been qualified for a data
retention time of >100 years at room temperature and is rated to have a guaranteed 1,000
write/erase cycles. Because the Flash cells are qualified for up to 1,000 write cycles, the
simulated EEPROM implements an effective wear-leveling algorithm which effectively
extends the number of write cycles for individual tokens.

The number of set-token operations is finite due to the write cycle limitation of the Flash. It is
not possible to guarantee an exact number of set-token operations because the life of the
simulated EEPROM depends on which tokens are written and how often.

The SN260 stores non-volatile information necessary for network operation as well as 8
tokens available to the Host (see section Section 7.2.6: Tokens on page 37). The majority of
internal tokens are only written when the SN260 performs a network join or leave operation.
As a simple estimate of possible set-token operations, consider an SN260 in a stable
network (no joins or leaves) not sending any messages where the Host uses only one of the
8-byte tokens available to it. Under this scenario, a very rough estimate results in
approximately 330,000 possible set-token operations. The number of possible set-token
calls, though, depends on which tokens are being set, so the ratios of set-token calls for
each token plays a large factor. A very rough estimate for the total number of times an App
token can be set is approximately 320,000.

These estimates would typically increase if the SN260 is kept closer to room temperature,
since the 1,000 guaranteed write cycles of the Flash is for across temperature.

5.6.2 Flash information area (FIA)

The SN260 also includes a separate 1024-byte FIA that can be used for storage of data
during manufacturing, including serial numbers and calibration values. Programming of this
special Flash page can only be enabled using the SIF interface to prevent accidental
corruption or erasure. The EmberZNet stack reserves a small portion of this space for its
own use and in addition makes eight manufacturing tokens available to the application. See
Section 7.2.6: Tokens on page 37, for more information.

5.7 Encryption accelerator
The SN260 contains a hardware AES encryption engine that is attached to the CPU using a
memory-mapped interface. NIST-based CCM, CCM*, CBC-MAC, and CTR modes are
implemented in hardware. These modes are described in the IEEE 802.15.4-2003
specification, with the exception of CCM*, which is described in the ZigBee Security
Services Specification 1.0. The EmberZNet stack implements a security API for applications
that require security at the application level.

SN260 Functional description

 19/88

5.8 Reset detection
The SN260 contains multiple reset sources. The reset event is logged into the reset source
register, which lets the CPU determine the cause of the last reset. The following reset
causes are detected:

● Power-on-reset

● Watchdog

● PC rollover

● Software reset

● Core power dip

5.9 Power-on-reset (POR)
Each voltage domain (1.8V digital core supply VDD_CORE and pads supply VDD_PADS)
has a power-on-reset (POR) cell.

The VDD_PADS POR cell holds the always-powered high-voltage domain in reset until the
following conditions have been met:

● The high-voltage pads supply VDD_PADS voltage rises above a threshold.

● The internal RC clock starts and generates three clock pulses.

● The 1.8V POR cell holds the main digital core in reset until the regulator output voltage
rises above a threshold.

Additionally, the digital domain counts 1,024 clock edges on the 24MHz crystal before
releasing the reset to the main digital core.

Table 11 lists the features of the SN260 POR circuitry.

5.10 Clock sources
The SN260 integrates two oscillators: a high-frequency 24MHz crystal oscillator and a low-
frequency internal 10kHz RC oscillator.

5.10.1 High-frequency crystal oscillator

The integrated high-frequency crystal oscillator requires an external 24MHz crystal with an
accuracy of ±40ppm. Based upon the application bill of materials and current consumption
requirements, the external crystal can cover a range of ESR requirements. For a lower ESR,
the cost of the crystal increases but the overall current consumption decreases. Likewise, for
higher ESR, the cost decreases but the current consumption increases. Therefore, the
designer can choose a crystal to fit the needs of the application.

Table 11. POR specifications

Parameter Min. Typ. Max. Unit

VDD_PADS POR release 1.0 1.2 1.4 V

VDD_PADS POR assert 0.5 0.6 0.7 V

1.8V POR release 1.35 1.5 1.65 V

1.8V POR hysteresis 0.08 0.1 0.12 V

Functional description SN260

20/88

Table 12 lists the specifications for the high-frequency crystal.

5.10.2 Internal RC oscillator

The SN260 has a low-power, low-frequency RC oscillator that runs all the time. Its nominal
frequency is 10kHz. It is divided down to 1kHz using a variable divider to allow software to
accurately calibrate it. This calibrated clock is used by the sleep timer.

Time-keeping accuracy depends on temperature fluctuations the chip is exposed to, power
supply impedance, and the calibration interval, but in general it will be better than 150ppm
(including crystal error of 40ppm).

Table 13 lists the specifications of the RC oscillator.

Table 12. High-frequency crystal specifications

Parameter Test conditions Min. Typ. Max. Unit

Frequency 24 MHz

Duty cycle 40 60 %

Phase noise from 1kHz to
100kHz

- 120 dBc/Hz

Accuracy Initial, temperature, and aging - 40 + 40 ppm

Crystal ESR Load capacitance of 10pF 100 W

Crystal ESR Load capacitance of 18pF 60 W

Start-up time to stable
clock (max. bias)

1 ms

Start-up time to stable
clock (optimum bias)

2 ms

Current consumption Good crystal: 20Ω ESR, 10pF load 0.2 0.3 mA

Current consumption
Worst-case crystals (60Ω, 18pF or
100Ω, 10pF)

0.5 mA

Current consumption At maximum bias 1 mA

Table 13. RC oscillator specifications

Parameter Test conditions Min. Typ. Max. Unit

Frequency 10 kHz

Analog trim steps 1 kHz

Frequency variation with supply
For a voltage drop from 3.6V
to 3.1V or 2.6V to 2.1V

0.75 1.5 %

SN260 Functional description

 21/88

5.11 Random number generator
The SN260 allows for the generation of random numbers by exposing a randomly generated
bit from the RX ADC. Analog noise current is passed through the RX path, sampled by the
receive ADC, and stored in a register. The value contained in this register could be used to
seed a software-generated random number. The EmberZNet stack utilizes these random
numbers to seed the random MAC backoff and encryption key generators.

5.12 Watchdog timer
The SN260 contains an internal watchdog timer clocked from the internal oscillator. If the
timer reaches its time-out value of approximately 2 seconds, it will reset the SN260. This
reset signal cannot be routed externally to the Host.

The SN260 firmware will periodically restart the watchdog timer while the firmware is
running normally. The Host cannot effect or configure the watchdog timer.

5.13 Sleep timer
The 16-bit sleep timer is contained in the always-powered digital block. The clock source for
the sleep timer is a calibrated 1kHz clock. The frequency is slowed down with a 2N prescaler
to generate a final timer resolution of 1ms. With a 1ms tick and a 16-bit timer, the timer
wraps about every 65.5 seconds. The EmberZNet stack appropriately handles timer wraps
allowing the Host to order a theoretical maximum sleep delay of 4 million seconds.

5.14 Power management
The SN260 supports four different power modes: active, idle, deep sleep, and power down.

Active mode is the normal, operating state of the SN260.

While in idle mode, code execution halts until any interrupt occurs. All modules of the SN260
including the radio continue to operate normally. The EmberZNet stack automatically
invokes idle as appropriate.

Deep sleep mode and power down mode both power off most of the SN260, including the
radio, and leave only the critical chip functions powered. The internal regulator is disabled
and VREG_OUT is turned off. All output signals are maintained in a frozen state. Upon
waking from deep sleep or power down mode, the internal regulator is re-enabled. Deep
sleep and power down result in the same sleep current consumption. The two sleep modes
differ as follows: the SN260 can wake on both an internal timer and an external signal from
deep sleep mode; power down mode can only wake on an external signal.

SPI protocol SN260

22/88

6 SPI protocol

The SN260 low level protocol centers on the SPI interface for communication with a pair of
GPIO for handshake signaling.

● The SN260 looks like a hardware peripheral.

● The SN260 is the slave device and all transactions are initiated by the Host (the
master).

● The SN260 supports a reasonably high data rate.

6.1 Physical interface configuration
The SN260 supports both SPI Slave Mode 0 (clock is idle low, sample on rising edge) and
SPI Slave Mode 3 (clock is idle high, sample on rising edge) at a maximum SPI clock rate of
5MHz, as illustrated in Figure 3.

Note: The convention for the waveforms in this document is to show Mode 0.

Figure 3. SPI transfer format, Mode 0 and Mode 3

The nHOST_INT signal and the nWAKE signal are both active low. The Host must supply a
pull-up resistor on the nHOST_INT signal to prevent errant interruptions during undefined
events such as the SN260 resetting. The SN260 supplies an internal pull-up on the nWAKE
signal to prevent errant interruptions during undefined events such as the Host resetting.

6.2 SPI transaction
The basic SN260 SPI transaction is half-duplex to ensure proper framing and to give the
SN260 adequate response time. The basic transaction, as shown in Figure 4, is composed
of three sections: Command, Wait, and Response. The transaction can be considered
analogous to a function call. The Command section is the function call, and the Response
section is the return value.

Figure 4. General timing diagram for a SPI transaction

SN260 SPI protocol

 23/88

6.2.1 Command section

The Host begins the transaction by asserting the Slave Select and then sending a command
to the SN260. This command can be of any length from 2 to 128 bytes and must not begin
with 0xFF. During the Command section, the SN260 will respond with only 0xFF. The Host
should ignore data on MISO during the Command section. Once the Host has completed
transmission of the entire message, the transaction moves to the Wait section.

6.2.2 Wait section

The Wait section is a period of time during which the SN260 may be processing the
command or performing other operations. Note that this section can be any length of time up
to 200 milliseconds. Because of the variable size of the Wait section, an interrupt-driven or
polling-driven method is suggested for clocking the SPI as opposed to a DMA method.
Since the SN260 can require up to 200 milliseconds to respond, as long as the Host keeps
Slave Select active, the Host can perform other tasks while waiting for a Response.

To determine when a Response is ready, use one of two methods:

● Clock the SPI until the SN260 transmits a byte other than 0xFF.

● Interrupt on the falling edge of nHOST_INT.

The first method, clocking the SPI, is recommended due to simplicity in implementing.
During the Wait section, the SN260 will transmit only 0xFF and will ignore all incoming data
until the Response is ready. When the SN260 transmits a byte other than 0xFF, the
transaction has officially moved into the Response section. Therefore, the Host can poll for a
Response by continuing to clock the SPI by transmitting 0xFF and waiting for the SN260 to
transmit a byte other than 0xFF. The SN260 will also indicate that a Response is ready by
asserting the nHOST_INT signal. The falling edge of nHOST_INT is the indication that a
Response is ready. Once the nHOST_INT signal asserts, nHOST_INT will return to idle
after the Host begins to clock data.

6.2.3 Response section

When the SN260 transmits a byte other than 0xFF, the transaction has officially moved into
the Response section. The data format is the same format used in the Command section.
The response can be of any length from 2 to 128 bytes and will not begin with 0xFF.
Depending on the actual response, the length of the response is known from the first or
second byte and this length should be used by the Host to clock out exactly the correct
number of bytes. Once all bytes have been clocked, it is allowable for the Host to de-assert
chip select. Since the Host is in control of clocking the SPI, there are no ACKs or similar
signals needed back from the Host because the SN260 will assume the Host could accept
the bytes being clocked on the SPI. After every transaction, the Host must hold the Slave
Select high for a minimum of 1ms. This timing requirement is called the inter-command
spacing and is necessary to allow the SN260 to process a command and become ready to
accept a new command.

6.2.4 Asynchronous signaling

When the SN260 has data to send to the Host, it will assert the nHOST_INT signal. The
nHOST_INT signal is designed to be an edge-triggered signal as opposed to a level-
triggered signal; therefore, the falling edge of nHOST_INT is the true indicator of data
availability. The Host then has the responsibility to initiate a transaction to ask the SN260 for
its output. The Host should initiate this transaction as soon as possible to prevent possible

SPI protocol SN260

24/88

backup of data in the SN260. The SN260 will de-assert the nHOST_INT signal after
receiving a byte on the SPI. Due to inherent latency in the SN260, the timing of when the
nHOST_INT signal returns to idle can vary between transactions. nHOST_INT will always
return to idle for a minimum of 10µs before asserting again. If the SN260 has more output
available after the transaction has completed, the nHOST_INT signal will assert again after
Slave Select is de-asserted and the Host must make another request.

6.2.5 Spacing

To ensure that the SN260 is always able to deal with incoming commands, a minimum inter-
command spacing is defined at 1ms. After every transaction, the Host must hold the Slave
Select high for a minimum of 1ms. The Host must respect the inter-command spacing
requirement, or the SN260 will not have time to operate on the command; additional
commands could result in error conditions or undesired behavior. If the nHOST_INT signal
is not already asserted, the Host is allowed to use the Wake handshake instead of the inter-
command spacing to determine if the SN260 is ready to accept a command.

6.2.6 Waking the SN260 from sleep

Waking up the SN260 involves a simple handshaking routine as illustrated in Figure 5. This
handshaking ensures that the Host will wait until the SN260 is fully awake and ready to
accept commands from the Host. If the SN260 is already awake when the handshake is
performed (such as when the Host resets and the SN260 is already operating), the
handshake will proceed as described below with no ill effects.

Note: A wake handshake cannot be performed if nHOST_INT is already asserted.

Figure 5. SN260 wake sequence

Waking the SN260 involves the following steps:

1. Host asserts nWAKE.

2. SN260 interrupts on nWAKE and exits sleep.

3. SN260 performs all operations it needs to and will not respond until it is ready to accept
commands.

4. SN260 asserts nHOST_INT within 10ms of nWAKE asserting. If the SN260 does not
assert nHOST_INT within 10ms of nWAKE, it is valid for the Host to consider the
SN260 unresponsive and to reset the SN260.

5. Host detects nHOST_INT assertion. Since the assertion of nHOST_INT indicates the
SN260 can accept SPI transactions, the Host does not need to hold Slave Select high
for the normally required minimum 1ms of inter-command spacing.

6. Host de-asserts nWAKE after detecting nHOST_INT assertion.

7. SN260 will de-assert nHOST_INT within 25s of nWAKE de-asserting.

8. After 25µs, any change on nHOST_INT will be an indication of a normal asynchronous
(callback) event.

SN260 SPI protocol

 25/88

6.2.7 Error conditions

If two or more different error conditions occur back to back, only the first error condition will
be reported to the Host (if it is possible to report the error). The following are error conditions
that might occur with the SN260.

● Oversized EZSP frame

If the transaction includes an EZSP Frame, the Length Byte cannot be a value greater
than 125. If the SN260 detects a length byte greater than 125, it will drop the incoming
Command and abort the entire transaction. The SN260 will then assert nHOST_INT
after Slave Select returns to Idle to inform the Host through an error code in the
Response section what has happened. Not only is the Command in the problematic
transaction dropped by the SN260, but the next Command is also dropped, because it
is responded to with the Oversized EZSP Frame Error Response.

● Aborted transaction

An aborted transaction is any transaction where Slave Select returns to Idle
prematurely and the SPI Protocol dropped the transaction. The most common reason
for Slave Select returning to Idle prematurely is the Host unexpectedly resetting. If a
transaction is aborted, the SN260 will assert nHOST_INT to inform the Host through an
error code in the Response section what has happened. When a transaction is
aborted, not only does the Command in the problematic transaction get dropped by the
SN260, but the next Command also gets dropped since it is responded to with the
Aborted Transaction Error Response.

● Missing frame terminator

Every Command and Response must be terminated with the Frame Terminator byte.
The SN260 will drop any Command that is missing the Frame Terminator. The SN260
will then immediately provide the Missing Frame Terminator Error Response.

● Long transaction

A Long Transaction error occurs when the Host clocks too many bytes. As long as the
inter-command spacing requirement is met, this error condition should not cause a
problem, since the SN260 will send only 0xFF outside of the Response section as well
as ignore incoming bytes outside of the Command section.

● Unresponsive

Unresponsive can mean the SN260 is not powered, not fully booted yet, incorrectly
connected to the Host, or busy performing other tasks. The Host must wait the
maximum length of the Wait section before it can consider the SN260 unresponsive to
the Command section. This maximum length is 200 milliseconds, measured from the
end of the last byte sent in the Command Section. If the SN260 ever fails to respond
during the Wait section, it is valid for the Host to consider the SN260 unresponsive and
to reset the SN260. Additionally, if nHOST_INT does not assert within 10ms of nWAKE
asserting during the wake handshake, the Host can consider the SN260 unresponsive
and reset the SN260.

6.3 SPI protocol timing
Figure 6 illustrates all critical timing parameters in the SPI Protocol. These timing
parameters are a result of the SN260’s internal operation and both constrain Host behavior
and characterize SN260 operation. The parameters shown are discussed elsewhere in this
document. Note that Figure 6 is not drawn to scale, but is provided to illustrate where the
parameters are measured.

SPI protocol SN260

26/88

Figure 6. SPI protocol timing waveform

Table 14 lists the timing parameters of the SPI protocol. These parameters are illustrated in
Figure 6.

6.4 Data format
The data format, also referred to as a command, is the same for both the Command section
and the Response section. The data format of the SPI Protocol is straightforward, as
illustrated in Figure 7.

Figure 7. SPI protocol data format

The total length of a command must not exceed 128 bytes.

All commands must begin with the SPI Byte. Some commands are only two bytes—that is,
they contain the SPI Byte and Frame Terminator only.

Table 14. SPI protocol timing parameters

Parameter Description Min. Typ. Max. Unit

t1 (a) Wake handshake, while 260 is awake 133 150 s

t1 (b) Wake handshake, while 260 is asleep 7.3 10 ms

t2 Wake handshake finish 1.1 1.2 25 s

t3 Reset pulse width 8 s

t4 Startup time 250 1500 ms

t5 nHOST_INT de-asserting after Command 13 35 75 s

t6 Clock rate 200 ns

t7 Wait section 25 755 200000 s

t8 nHOST_INT de-asserting after Response 20 130 800 s

t9 nHOST_INT asserting after transaction 25 70 800 s

t10 Inter-command spacing 1 ms

SN260 SPI protocol

 27/88

The Length Byte is only included if there is information in the EZSP Frame (EmberZNet
Serial Protocol Frame) and the Length Byte defines the length of just the EZSP Frame.
Therefore, if a command includes an EZSP Frame, the Length Byte can have a value from 2
through 125 and the overall command size will be 5 through 128 bytes. The SPI Byte can be
a specific value indicating if there is an EZSP Frame or not, and if there is an EZSP Frame,
then the Length Byte can be expected.

The Error Byte is used by the error responses to provide additional information about the
error and appears in place of the length byte. This additional information is described in the
following sections.

The EZSP Frame contains the data needed for operating EmberZNet. The EZSP Frame and
its format are explained in Section 7: EmberZNet serial protocol on page 34.

The Frame Terminator is a special control byte used to mark the end of a command. The
Frame Terminator byte is defined as 0xA7 and is appended to all Commands and
Responses immediately after the final data byte. The purpose of the Frame Terminator is to
provide a known byte the SPI Protocol can use to detect a corrupt command. For example, if
the SN260 resets during the Response Section, the Host will still clock out the correct
number of bytes. But when the host attempts to verify the value 0xA7 at the end of the
Response, it will see either the value 0x00 or 0xFF and know that the SN260 just reset and
the corrupt Response should be discarded.

Note: The Length Byte only specifies the length of the EZSP Frame. It does not include the Frame
Terminator.

6.5 SPI byte
Table 15 lists the possible commands and their responses in the SPI Byte.

Table 15. SPI commands & responses

Command
value

Command
Response

value
Response

Any Any 0x00
SN260 reset occurred—This is never used in another response; it
always indicates an SN260 Reset.

Any Any 0x01
Oversized EZSP Frame received—This is never used in another
response; it always indicates an overflow occurred.

Any Any 0x02
Aborted Transaction occurred—This is never used in another
response; it always indicates an aborted transaction occurred.

Any Any 0x03
Missing Frame Terminator—This is never used in another
response; it always indicates a missing frame terminator in the
command.

Any Any 0x04 Reserved

0x00 – 0x0F Reserved [none] [none]

0x0A
SPI Protocol

Version
0x81 – 0xBF

bit[7] is always set. bit[6] is always cleared. bit[5:0] is a number
from 1–63.

0x0B SPI Status 0xC0 – 0xC1 bit[7] is always set. bit[6] is always set. bit[0]—Set if Alive.

0xF0 – 0xFD Reserved [none] [none]

0xFE EZSP Frame 0xFE EZSP frame

0xFF Invalid 0xFF Invalid

SPI protocol SN260

28/88

6.5.1 Primary SPI bytes

There are three primary SPI bytes: SPI protocol version, SPI status, and EZSP frame.

● SPI protocol version [0x0A]

Sending this command requests the SPI Protocol Version number from the SPI
Interface. The response will always have bit 7 set and bit 6 cleared. In this current
version, the response will be 0x81, because the version number corresponding to this
set of Command-Response values is version number 1. The version number can be a
value from 1 to 63 (0x81–0xBF).

● SPI status [0x0B]

Sending this command asks for the SN260 status. The response status byte will always
have the upper 2 bits set. In this current version, the status byte only has one status bit
[0], which is set if the SN260 is alive and ready for commands.

● EZSP frame [0xFE]

This byte indicates that the current transaction is an EZSP transaction and there is
more data to follow. This SPI Byte, and only this SPI Byte, will cause the transaction to
look like the full data format illustrated in Figure 7. The byte immediately after this SPI
Byte will be a Length Byte, and it is used to identify the length of the EZSP Frame. The
EZSP Frame is defined in section Section 7: EmberZNet serial protocol on page 34. If
the SPI Byte is 0xFE, it means the minimum transaction size is five bytes. All other SPI
Bytes mean the transaction size is two or three bytes.

6.5.2 Special response bytes

There are only five SPI Byte values, 0x00–0x04, ever used as error codes (see Table 16).
When the error condition occurs, any command sent to the SN260 will be ignored and
responded to with one of these codes. These special SPI Bytes must be trapped and dealt
with. In addition, for each error condition the Error Byte (instead of the Length Byte) is also
sent with the SPI Byte.

Table 16. Byte values used as error codes

SPI byte
value

Error message Error description Error byte description

0x00 SN260 Reset
See Section 6.6: Powering on, power cycling,
and rebooting.

The reset type. Refer to the API
documentation discussing
EmberResetType.

0x01
Oversized EZSP
Frame

The command contained an EZSP frame with
a Length Byte greater than 125. The SN260
was forced to drop the entire command.

Reserved

0x02
Aborted
Transaction

The transaction was not completed properly
and the SN260 was forced to abort the
transaction.

Reserved

0x03
Missing Frame
Terminator

The command was missing the Frame
Terminator. The SN260 was forced to drop the
entire command.

Reserved

0x04 Reserved [none] [none]

SN260 SPI protocol

 29/88

6.6 Powering on, power cycling, and rebooting
When the Host powers on (or reboots), it cannot guarantee that the SN260 is awake and
ready to receive commands. Therefore, the Host should always perform the Wake SN260
handshake to guarantee that the SN260 is awake. If the SN260 resets, it needs to inform the
Host so that the Host can reconfigure the stack if needed.

When the SN260 resets, it will assert the nHOST_INT signal, telling the Host that it has
data. The Host should request data from the SN260 as usual. The SN260 will ignore
whatever command is sent to it and respond only with two bytes. The first byte will always be
0x00 and the second byte will be the reset type as defined by EmberResetType. This
specialty SPI Byte is never used in another Response SPI Byte. If the Host sees 0x00 from
the SN260, it knows that the SN260 has been reset. The SN260 will de-assert the
nHOST_INT signal shortly after receiving a byte on the SPI and process all further
commands in the usual manner. In addition to the Host having control of the reset line of the
SN260, the EmberZNet Serial Protocol also provides a mechanism for a software reboot.

6.6.1 Unexpected resets

The SN260 is designed to protect itself against undefined behavior due to unexpected
resets. The protection is based on the state of Slave Select since the inter-command
spacing mandates that Slave Select must return to idle. The SN260’s internal SPI Protocol
uses Slave Select returning to idle as a trigger to re-initialize its SPI Protocol. By always re-
initializing, the SN260 is protected against the Host unexpectedly resetting or terminating a
transaction. Additionally, if Slave Select is active when the SN260 powers on, the SN260 will
ignore SPI data until Slave Select returns to idle. By ignoring SPI traffic until idle, the SN260
will not begin receiving in the middle of a transaction.

If the Host resets, in most cases it should reset the SN260 as well so that both devices are
once again in the same state: freshly booted. Alternately, the Host can attempt to recover
from the reset by recovering its previous state and resynchronizing with the state of the
SN260.

If the SN260 resets during a transaction, the Host can expect either a Wait Section timeout
or a missing Frame Terminator indicating an invalid Response.

If the SN260 resets outside of a transaction, the Host should proceed normally.

6.7 Transaction examples
This section contains the following transaction examples:

● SPI protocol version

● EmberZNet serial protocol frame — NOP command

● SN260 reset

● Three-part transaction: Wake, Get Version, Stack Status Callback

SPI protocol SN260

30/88

6.7.1 SPI protocol version

Figure 8. SPI protocol version example

1. Activate Slave Select (nSSEL).

2. Transmit the command 0x0A - SPI Protocol Version Request.

3. Transmit the Frame Terminator, 0xA7.

4. Wait for nHOST_INT to assert.

5. Transmit and receive 0xFF until a byte other than 0xFF is received.

6. Receive response 0x81 (a byte other than 0xFF), then receive the Frame Terminator,
0xA7.

7. Bit 7 is always set and bit 6 is always cleared in the Version Response, so this is
Version 1.

8. De-activate Slave Select.

6.7.2 EmberZNet serial protocol frame — NOP command

Figure 9. EmberZNet serial protocol frame - NOP command example

1. Activate Slave Select (nSSEL).

2. Transmit the appropriate command:

– 0xFE: SPI Byte indicating an EZSP Frame

– 0x02: Length Byte showing the EZSP Frame is 2 bytes long

– 0x00: EZSP Frame Control Byte indicating a command with no sleeping

– 0x05: EZSP Frame Type Byte indicating the NOP command

– 0xA7: Frame Terminator

3. Wait for nHOST_INT to assert.

4. Transmit and receive 0xFF until a byte other than 0xFF is received.

5. Receive response 0xFE (a byte other than 0xFF) and read the next byte for a length.

SN260 SPI protocol

 31/88

6. Stop transmitting after the number of bytes (length) is received plus the Frame
Terminator.

7. Decode the response:

– 0xFE: SPI Byte indicating an EZSP Frame

– 0x02: Length Byte showing the EZSP Frame is 2 bytes long

– 0x80: EZSP Frame Control Byte indicating a response with no overflow

– 0x05: EZSP Frame Type Byte indicating the NOP response

– 0xA7: Frame Terminator

8. De-activate Slave Select.

6.7.3 SN260 reset

Figure 10. SN260 reset example

1. nHOST_INT asserts.

2. Activate Slave Select (nSSEL).

3. Transmit the command:

– 0xFE: SPI Byte indicating an EZSP Frame

– 0x02: Length Byte showing the EZSP Frame is 2 bytes long

– 0x00: EZSP Frame Control Byte indicating a command with no sleeping

– 0x06: EZSP Frame Type Byte indicating the callback command

– 0xA7: Frame Terminator

4. Wait for nHOST_INT to assert.

5. Transmit and receive 0xFF until a byte other than 0xFF is received.

6. Receive response 0x00 (a byte other than 0xFF).

7. Receive the Error Byte and decode (0x02 is enumerated as RESET_POWERON).

8. Receive the Frame Terminator (0xA7).

9. Response 0x00 indicates the SN260 has reset and the Host should respond
appropriately.

10. Deactivate Slave Select.

11. Since nHOST_INT does not assert again, there is no more data for the Host.

SPI protocol SN260

32/88

6.7.4 Three-part transaction: Wake, Get Version, Stack Status Callback

Figure 11. Timing diagram of the three-part transaction

1. Activate nWAKE and activate timeout timer.

2. SN260 wakes up (if not already) awake and enables communication.

3. nHOST_INT asserts, indicating the SN260 can accept commands.

4. Host sees nHOST_INT activation within 10ms and deactivates nWAKE and timeout
timer.

5. nHOST_INT de-asserts immediately after nWAKE.

6. Activate Slave Select.

7. Transmit the Command 0x0A - SPI Protocol Version Request.

8. Transmit the Frame Terminator, 0xA7.

9. Wait for nHOST_INT to assert.

10. Transmit and receive 0xFF until a byte other than 0xFF is received.

11. Receive response 0x81 (a byte other than 0xFF), then receive the Frame Terminator,
0xA7.

12. Bit 7 is always set and bit 6 is always cleared in the Version Response, so this is
Version 1.

13. Deactivate Slave Select.

14. Host begins timing the inter-command spacing of 1ms in preparation for sending the
next command.

15. nHOST_INT asserts shortly after deactivating Slave Select, indicating a callback.

16. Host sees nHOST_INT, but waits for the 1ms before responding.

17. Activate Slave Select.

18. Transmit the command:

– 0xFE: SPI Byte indicating an EZSP Frame

– 0x02: Length Byte showing the EZSP Frame is 2 bytes long

– 0x00: EZSP Frame Control Byte indicating a command with no sleeping

– 0x06: EZSP Frame Type Byte indicating the callback command

– 0xA7: Frame Terminator

19. Wait for nHOST_INT to assert.

20. Transmit and receive 0xFF until a byte other than 0xFF is received.

21. Receive response 0xFE (a byte other than 0xFF), read the next byte for a length.

22. Stop transmitting after the number of bytes (length) is received plus the Frame
Terminator.

SN260 SPI protocol

 33/88

23. Decode the response:

– 0xFE: SPI Byte indicating an EZSP Frame

– 0x03: Length Byte showing the EZSP Frame is 3 bytes long

– 0x80: EZSP Frame Control Byte indicating a response with no overflow

– 0x19: EZSP Frame Type Byte indicating the emberStackStatusHandler
command

– 0x91: EmberStatus EMBER_NETWORK_DOWN from
emberStackStatusHandler

– 0xA7 – Frame Terminator

24. Deactivate Slave Select.

25. Since nHOST_INT does not assert again, there is no more data for the Host.

EmberZNet serial protocol SN260

34/88

7 EmberZNet serial protocol

EmberZnet Serial Protocol (EZSP)has been designed to be very familiarr to customers who
have used the EmberZNet 2.x stack API. The majority of the commands and responses are
functionally identical to those found in EmberZNet 2.x. The variations are due mainly to the
timing differences of running the application on a separate processor across a serial
interface. Communication between the SN260 and the Host consists of a two-message
transaction. The Host sends a command message to the SN260 and then the SN260 sends
a response message to the Host. If the SN260 needs to communicate asynchronously with
the Host, it will indicate this by using the interrupt line and then waiting for the Host to send
the callback command.

All EZSP frames begin with a Frame Control Byte followed by a Frame ID Byte. The format
of the rest of the frame depends on the frame ID. Section 7.3: Protocol format on page 38
defines the format for all the frame IDs. Most of the frames have a fixed length. A few, such
as those containing application messages, are of variable length. The frame control
indicates the direction of the message (command or response). For commands, the frame
control also contains power management information, and for responses it also contains
status information.

When a command contains an application message, the Host must supply a one-byte tag.
This tag is used in future commands and responses to refer to the message. For example,
when sending a message, the Host provides both the message contents and a tag. The tag
is then used to report the fate of the message in a later response from the SN260.

7.1 Byte order
All multiple octet fields are transmitted and received with the least significant octet first, also
referred to as little endian. This is the same byte order convention specified by 802.15.4 and
ZigBee. Note that EUI64 fields are treated as a 64-bit number and are therefore transmitted
and received in little endian order. Each individual octet is transmitted with the most
significant bit first, as shown in Section 6.1: Physical interface configuration on page 22.

7.2 Conceptual overview
This section provides an overview of the concepts that are specific to the SN260 or that
differ from the EmberZNet 2.x stack API. The commands and responses mentioned in this
overview are described in more detail later in this document.

7.2.1 Stack configuration

The Host can use the version command to obtain information about the firmware running
on the SN260. There are a number of configuration values that affect the behavior of the
stack. The Host can read these values at any time using the getConfigurationValue
command. After the SN260 has reset, the Host can modify any of the default values using
the setConfigurationValue command. The Host must then provide information about
the application endpoints using the addEndpoint command.

Table 17 gives the minimum, default and maximum values for each of the configuration
values. Also listed is the RAM cost. This is the number of bytes of additional RAM required
to increase the configuration value by one. Since the total amount of RAM is fixed, the

SN260 EmberZNet serial protocol

 35/88

additional RAM required must be made available by reducing one of the other configuration
values.

Table 17. Configuration values

Value Min. Def. Max. Units
RAM
Cost

Description

EZSP_CONFIG_PACKET_BUFFER_
COUNT

5 24
packet
buffers

40
The number of packet buffers available to the
stack.

EZSP_CONFIG_NEIGHBOR_TABLE_
SIZE

8 16 16 neighbors 18
The maximum number of router neighbors the
stack can keep track of. A neighbor is a node
within radio range.

EZSP_CONFIG_TRANSPORT_
PACKET_COUNT

0 10 messages 10

The maximum number of datagram and
sequenced messages the stack can have in
the process of being either transmitted or
received at any given time.

EZSP_CONFIG_BINDING_
TABLE_SIZE (A)

0 8
32 +
(B)

entries 3
The maximum number of bindings supported
by the stack. It includes the bindings in
EEPROM and in RAM.

EZSP_CONFIG_TEMPORARY_
BINDING_ENTRIES (B)

0 8 (A) entries 12 The number of binding table entries in RAM.

EZSP_CONFIG_TRANSPORT_
CONNECTION_COUNT

0 0 entries 12
The number of binding table entries that can
concurrently support an open sequenced
connection.

EZSP_CONFIG_ROUTE_
TABLE_SIZE (C)

0 16 entries 6

The maximum number of destinations to which
a node can route messages. This include both
messages originating at this node and those
relayed for others.

EZSP_CONFIG_DISCOVERY_
TABLE_SIZE

0 8 entries 10
The number of simultaneous route discoveries
that a node will support.

EZSP_CONFIG_DISCOVERY_
CACHE_ENDPOINTS (D)

0 4 endpoints 0
End-device child endpoints larger than this
value will not have their discovery information
cached by their router parent.

EZSP_CONFIG_DISCOVERY_
CACHE_ENTRY_SIZE

11 +
(D)

15 15 bytes 0

The size of an entry in the end device
discovery cache on a router. Endpoint
descriptions longer than this will not be
cached.

EZSP_CONFIG_DISCOVERY_
CACHE_SIZE

0 35 35 entries 0
The number of entries in the discovery cache
on a router. Each end device child requires 1 +
(D) entries. The cache is held in EEPROM.

EZSP_CONFIG_STACK_PROFILE 0 0 0 Specifies the stack profile.

EZSP_CONFIG_SECURITY_LEVEL 0 5 5 0

The security level used for security at the MAC
and network layers. The supported values are
0 (no security) and 5 (payload is encrypted
and a four-byte MIC is used for authentication).

EZSP_CONFIG_MAX_HOPS 0 10 hops 0 The maximum number of hops for a message.

EZSP_CONFIG_MAX_END_DEVICE_
CHILDREN (E)

0 6 32 children 4
The maximum number of end device children
that a router will support.

EZSP_CONFIG_INDIRECT_
TRANSMISSION_TIMEOUT

0 3000 30000
milli-

seconds
0

The maximum amount of time that the MAC
will hold a message for indirect transmission to
a child.

EmberZNet serial protocol SN260

36/88

7.2.2 Policy settings

There are some situations when the SN260 must make a decision but there isn’t enough
time to consult with the Host. The Host can control what decision is made by setting the
policy in advance. The SN260 will then make decisions according to the current policy. The
Host is informed via callbacks each time a decision is made, but by the time the news
reaches the Host, it is too late to change that decision. You can change the policies at any
time by using the setPolicy command.

A policy is used for trust center behavior, external binding modification requests, datagram
replies, generating pollHandler callbacks, and the contents of the unicastSent and
messageSent callbacks.

7.2.3 Datagram replies

The policy for datagram replies allows the Host to decide whether it wants to supply the
SN260 with a reply payload for every datagram received. If the Host sets the policy to not
supply a reply, the SN260 will automatically send an empty reply (containing no payload) for
every datagram received. If the Host sets the policy to supply the reply, then the SN260 will
only send a reply when instructed by the Host.

If the reply does not reach the sender before the transport retry timeout expires, the sender
will transmit the datagram again. The Host must process the incoming message and supply
the reply quickly enough to avoid retransmission by the sender. Provided this timing
constraint is met, multiple datagrams can be received before the first reply is supplied and
the replies can be supplied in any order.

7.2.4 Callbacks

Asynchronous callbacks from the SN260 are sent to the Host as the response to a
callback command. The SN260 uses the interrupt line to indicate that the Host should
send a callback command. The SN260 will queue multiple callbacks while it waits for the
Host, and each response only delivers one callback. If the SN260 receives the callback
command when there are no pending callbacks, it will reply with the noCallbacks
response.

EZSP_CONFIG_RESERVED_
ROUTING_ENTRIES

0 0 (C) entries 0
The number of route table entries that are
reserved for temporary aggregation routes in
the mesh stack.

EZSP_CONFIG_MOBILE_NODE_
POLL_TIMEOUT

0 20
quarter
seconds

0

The maximum amount of time that a mobile
node can wait between polls. If no poll is heard
within this timeout, then the parent removes
the mobile node from its tables.

EZSP_CONFIG_RESERVED_
MOBILE_CHILD_ENTRIES

0 0 (E) entries 0
The number of child table entries reserved for
use only by mobile nodes.

EZSP_CONFIG_HOST_RAM 0 0 255 bytes 1
The amount of RAM available for use by the
Host.

EZSP_CONFIG_TX_POWER_MODE 0 0 3 0
Enables boost power mode and/or the
alternate transmitter output.

Table 17. Configuration values (continued)

Value Min. Def. Max. Units
RAM
Cost

Description

SN260 EmberZNet serial protocol

 37/88

7.2.5 Power management

The SN260 will always idle its processor whenever possible. To further reduce power
consumption, the SN260 can be put to sleep by the Host. In power down mode, only an
external interrupt will wake the SN260. In deep sleep mode, the SN260 will use its internal
timer to wake up for scheduled events. The SN260 provides two independent timers that the
Host can use for any purpose, including waking up the SN260 from deep sleep mode.
Timers are set using the setTimer command and generate timerHandler callbacks.

The initial frame control byte of every command tells the SN260 which sleep mode to enter
after it has responded to the command. Including this information in every command
(instead of having a separate power management command) allows the SN260 to be put to
sleep faster. If the Host needs to put the SN260 to sleep without also performing another
action, the nop command can be used.

In deep sleep mode, the SN260 will wake up for an internal event. If the event does not
produce a callback for the Host, the SN260 will go back to sleep once the event has been
handled. If the event does produce a callback, the SN260 will signal the Host and remain
awake waiting for the callback command. If the frame control byte of the callback
command specifies deep sleep mode, then the SN260 would normally go back to sleep after
responding with the callback. However, if there is a second callback pending, the SN260 will
remain awake waiting for another callback command.

To avoid disrupting the operation of the network, only put the SN260 to sleep when it is not
joined to a network or when it is joined as a sleeping end device. If the SN260 is joined as a
sleeping end device, then it must poll its parent in order to receive messages. The Host
controls the polling behavior using the pollForData command. Polls are sent periodically
with the interval set by the Host or a single poll can be sent. The result of every poll attempt
is optionally reported using the pollCompleteHandler callback.

7.2.6 Tokens

Some of the non-volatile storage on the SN260 is made available for use by the Host. Up to
8 manufacturing tokens stored in the flash information area can be read using the
getMfgToken command and up to 8 tokens stored in the simulated EEPROM can be read
and written using the setToken and getToken commands. Each token is 8 bytes. Tokens
preserve their values between reboots. Refer to section Simulated EEPROM for a
description of the simulated EEPROM and write cycle estimates.

7.2.7 RAM

Some of the RAM on the SN260 can be reserved by the Host for its own use. The amount of
space reserved is the EZSP_CONFIG_HOST_RAM configuration value (set using the
setConfigurationValue command). The Host can then read and write data using the
setRam and getRam commands. If the Host chooses to reserve RAM, this will reduce the
number of messages and callbacks that the SN260 can buffer.

EmberZNet serial protocol SN260

38/88

7.2.8 SN260 status

The frame control byte of every response sent by the SN260 contains two status bits:

● The overflow bit is set if the SN260 ran out of memory at any time since the previous
response was sent. If this bit is set, then messages may have been lost.

● The truncated bit is set if the SN260 truncated the current response. If this bit is set, the
command from the Host produced a response larger than the maximum EZSP frame
length.

You can use the nop command to check the status of the SN260 without also performing
another action.

7.2.9 Random number generator

The Host can obtain a random number from the SN260 using the getRandomNumber
command. The random number is generated from analog noise in the radio and can be
used to seed a random number generator on the Host.

7.3 Protocol format
All EZSP frames begin with a frame control byte. Table 18 describes the meaning of this
byte for command and response frames. Table 19 describes the sleep modes, Table 20
describes the overflow status bit and Table 21 describes the truncated status bit. The
second byte of all EZSP frames is the frame ID byte.

Table 18. Frame control byte

Bit Command Response

7 (MSB) 0 1

6 0 (reserved) 0 (reserved)

5 0 (reserved) 0 (reserved)

4 0 (reserved) 0 (reserved)

3 0 (reserved) 0 (reserved)

2 0 (reserved) 0 (reserved)

1 sleepMode[1] truncated

0 (LSB) sleepMode[0] overflow

Table 19. Sleep modes

sleepMode[1] sleepMode[0] Description

1 1 Reserved.

1 0 Power down.

0 1 Deep sleep.

0 0 Idle.

SN260 EmberZNet serial protocol

 39/88

Section 7.3.1: Type definitions defines all the types used by the SN260 and Section 7.3.2:
Structure definitions defines all the structures. Section 7.3.3: Named values enumerates all
the named values for the different types. The subsequent sections list all the frames
supported by the SN260, specifying the Frame ID, the command parameters and the
response parameters. The list is divided into five sections:

● Section 7.3.4 lists Configuration frames.

● Section 7.3.5 lists Utilities frames.

● Section 7.3.6 lists Networking frames.

● Section 7.3.7 lists Binding frames.

● Section 7.3.8 lists Messaging frames.

Finally, section Section 7.3.9 provides an alphabetical list of all the frames.

Table 20. Overflow status

overflow Description

1 The SN260 ran out of memory since the previous response.

0 No memory shortage since the previous response.

Table 21. Truncated status

truncated Description

1
The SN260 truncated the current response to avoid exceeding the maximum

EZSP frame length.

0 The current response was not truncated.

EmberZNet serial protocol SN260

40/88

7.3.1 Type definitions

Table 22. Type definitions

Type Alias Description

boolean int8u True or false.

EzspConfigId int8u Identifies a configuration value.

EzspConfigTxPowerMode int16u Values for EZSP_CONFIG_TX_POWER_MODE.

EzspConfigStatus int8u Return type for configuration commands.

EzspPolicyId int8u Identifies a policy.

EzspDecisionId int8u Identifies a policy decision.

EmberStatus int8u Return type for stack functions.

EmberEventUnits int8u
Either marks an event as inactive or specifies the units for the event
execution time.

EmberNodeType int8u The type of the node.

EmberNetworkStatus int8u The possible join states for a node.

EmberIncomingMessageType int8u Incoming message types.

EmberBindingType int8u Binding types.

EmberUnicastOption int8u Options to use when sending a unicast message.

EmberNetworkScanType int8u Network scan types.

EmberJoinDecision int8u Decision made by the trust center when a node attempts to join.

EmberNodeId int16u 16-bit ZigBee network address.

EmberPanId int16u 802.15.4 PAN ID.

EmberEUI64 int8u[8] EUI 64-bit ID (an IEEE address).

SN260 EmberZNet serial protocol

 41/88

7.3.2 Structure definitions

Table 23. Structure definitions

Structure Field Description

EmberNetworkParameters

Network parameters.

int16u panId The network's PAN identifier.

int8s radioTxPower A power setting, in dBm.

int8u radioChannel A radio channel.

EmberApsFrame

ZigBee APS frame parameters.

int16u profileId
The application profile ID that describes the format of
the message.

int8u clusterId The cluster ID for this message.

int8u sourceEndpoint The source endpoint.

int8u destinationEndpoint The destination endpoint.

EmberUnicastOption
options

A bitmask of options.

EmberBindingTableEntry

An entry in the binding table.

EmberBindingType type The type of binding.

int8u local The endpoint on the local node.

int8u remote
The endpoint on the remote node (specified by
identifier).

int8u clusterId

A cluster ID that matches one from the local endpoint's
simple descriptor. This cluster ID is set by the
provisioning application to indicate which part an
endpoint's functionality is bound to this particular
remote node and is used to distinguish between unicast
and multicast bindings.

A binding can be used to send messages with any
cluster ID, not just the one listed in the binding.

EmberEUI64 identifier
A 64-bit identifier. This is either the destination EUI64
(for unicasts) or the 64-bit group address (for
multicasts).

EmberZNet serial protocol SN260

42/88

7.3.3 Named values

Table 24. boolean

Structure Field Description

FALSE 0x00 An alias for zero, used for clarity.

TRUE 0x01 An alias for one, used for clarity.

Table 25. EzspConfigId

Structure Field Description

EZSP_CONFIG_PACKET_BUFFER_COUNT 0x01 The number of packet buffers available to the stack.

EZSP_CONFIG_NEIGHBOR_TABLE_SIZE 0x02
The maximum number of router neighbors the stack can
keep track of. A neighbor is a node within radio range.

EZSP_CONFIG_TRANSPORT_PACKET_COUN
T

0x03

The maximum number of datagram and sequenced
messages the stack can have 'in-flight' at any time. Here,
'in-flight' means 'in the process of being either
transmitted or received'.

EZSP_CONFIG_BINDING_TABLE_SIZE 0x04
The maximum number of bindings supported by the
stack. It includes the bindings in EEPROM and in RAM.

EZSP_CONFIG_TEMPORARY_BINDING_ENT
RIES

0x05 The number of binding table entries in RAM.

EZSP_CONFIG_TRANSPORT_CONNECTION_
COUNT

0x06
The number of binding table entries that can
concurrently support an open sequenced connection.

EZSP_CONFIG_ROUTE_TABLE_SIZE 0x07
The maximum number of destinations to which a node
can route messages. This include both messages
originating at this node and those relayed for others.

EZSP_CONFIG_DISCOVERY_TABLE_SIZE 0x08
The number of simultaneous route discoveries that a
node will support.

EZSP_CONFIG_DISCOVERY_CACHE_ENDPO
INTS

0x09
End-device child endpoints larger than this value will not
have their discovery information cached by their router
parent.

EZSP_CONFIG_DISCOVERY_CACHE_ENTRY
_SIZE

0x0A
The size of an entry in the end device discovery cache
on a router. Endpoint descriptions longer than this will
not be cached.

EZSP_CONFIG_DISCOVERY_CACHE_SIZE 0x0B

The number of entries in the discovery cache on a
router. Each end device child requires 1 +
EZSP_CONFIG_DISCOVERY_CACHE_ENDPOINTS
entries. The cache is held in EEPROM.

EZSP_CONFIG_STACK_PROFILE 0x0C Specifies the stack profile.

EZSP_CONFIG_SECURITY_LEVEL 0x0D

The security level used for security at the MAC and
network layers. The supported values are 0 (no security)
and 5 (payload is encrypted and a four-byte MIC is used
for authentication).

EZSP_CONFIG_MAX_HOPS 0x10 The maximum number of hops for a message.

EZSP_CONFIG_MAX_END_DEVICE_CHILDR
EN

0x11
The maximum number of end device children that a
router will support.

SN260 EmberZNet serial protocol

 43/88

EZSP_CONFIG_INDIRECT_TRANSMISSION
TIMEOUT

0x12
The maximum amount of time that the MAC will hold a
message for indirect transmission to a child.

EZSP_CONFIG_RESERVED_ROUTING_
ENTRIES

0x13
The number of route table entries that are reserved for
temporary aggregation routes in the mesh stack.

EZSP_CONFIG_MOBILE_NODE_POLL_
TIMEOUT

0x14
The maximum amount of time that a mobile node can
wait between polls. If no poll is heard within this timeout,
then the parent removes the mobile node from its tables.

EZSP_CONFIG_RESERVED_MOBILE_CHILD
ENTRIES

0x15
The number of child table entries reserved for use only
by mobile nodes.

EZSP_CONFIG_HOST_RAM 0x16 The amount of RAM available for use by the Host.

EZSP_CONFIG_TX_POWER_MODE 0x17
Enables boost power mode and/or the alternate
transmitter output.

Table 25. EzspConfigId (continued)

Structure Field Description

Table 26. EzspConfigTxPowerMode

Structure Field Description

EMBER_TX_POWER_MODE_DEFAULT 0x00
Normal power mode and bi-directional RF transmitter
output.

EMBER_TX_POWER_MODE_BOOST 0x01

Enable boost power mode. This is a high performance
radio mode which offers increased receive sensitivity
and transmit power at the cost of an increase in power
consumption.

EMBER_TX_POWER_MODE_ALTERNATE 0x02
Enable the alternate transmitter output. This allows for
simplified connection to an external power amplifier via
the RF_TX_ALT_P and RF_TX_ALT_N pins.

EMBER_TX_POWER_MODE_BOOST_AND_
ALTERNATE

0x03
Enable both boost mode and the alternate transmitter
output.

Table 27. EzspConfigStatus

Structure Field Description

EZSP_CONFIG_SUCCESS 0x00 The command was successful.

EZSP_CONFIG_OUT_OF_MEMORY 0x01 Insufficient memory was available.

EZSP_CONFIG_INVALID_VALUE 0x02 The value was out of bounds.

EZSP_CONFIG_INVALID_TAG 0x03 The configuration tag was not recognized.

EZSP_CONFIG_INVALID_CALL 0x04 Configuration values can no longer be modified.

Table 28. EzspPolicyId

Structure Field Description

EZSP_TRUST_CENTER_POLICY 0x00 Controls trust center behavior.

EZSP_BINDING_MODIFICATION_POLICY 0x01
Controls how external binding modification requests are
handled.

EZSP_DATAGRAM_REPLIES_POLICY 0x02 Controls whether the Host supplies datagram replies.

EmberZNet serial protocol SN260

44/88

EZSP_POLL_HANDLER_POLICY 0x03
Controls whether pollHandler callbacks are
generated.

EZSP_MESSAGE_CONTENTS_IN_CALLBACK
_POLICY

0x04
Controls whether the message contents are included in
unicastSent and messageSent callbacks.

Table 28. EzspPolicyId (continued)

Structure Field Description

Table 29. EzspDecisionId

Structure Field Description

EZSP_ALLOW_SECURE_JOINS_ONLY 0x00
EZSP_TRUST_CENTER_POLICY default decision.
Only allow nodes that are joining securely using the
network key to join.

EZSP_ALLOW_ALL_JOINS 0x01
EZSP_TRUST_CENTER_POLICY decision. Allow all
nodes to join, sending the key to nodes that are not
joining securely.

EZSP_DISALLOW_ALL_JOINS 0x02
EZSP_TRUST_CENTER_POLICY decision. Reject all
join attempts.

EZSP_ASK_TRUST_CENTER 0x03
EZSP_TRUST_CENTER_POLICY decision. Forward
the request to the trust center (this value should not be
used for the trust center itself).

EZSP_DISALLOW_BINDING_MODIFICATIO
N

0x10
EZSP_BINDING_MODIFICATION_POLICY default
decision. Do not allow the local binding table to be
changed by remote nodes.

EZSP_ALLOW_BINDING_MODIFICATION 0x11
EZSP_BINDING_MODIFICATION_POLICY decision.
Allow remote nodes to change the local binding table.

EZSP_HOST_WILL_NOT_SUPPLY_REPLY 0x20
EZSP_DATAGRAM_REPLIES_POLICY default decision.
The SN260 will automatically send an empty reply
(containing no payload) for every datagram received.

EZSP_HOST_WILL_SUPPLY_REPLY 0x21
EZSP_DATAGRAM_REPLIES_POLICY decision. The
SN260 will only send a reply if it receives a sendReply
command from the Host.

EZSP_POLL_HANDLER_IGNORE 0x30
EZSP_POLL_HANDLER_POLICY default decision. Do
not inform the Host when a child polls.

EZSP_POLL_HANDLER_CALLBACK 0x31
EZSP_POLL_HANDLER_POLICY decision. Generate a
pollHandler callback when a child polls.

EZSP_MESSAGE_TAG_ONLY_IN_CALLBACK 0x40
EZSP_MESSAGE_CONTENTS_IN_CALLBACK_POLICY
default decision. Include only the message tag in
unicastSent and messageSent callbacks.

EZSP_MESSAGE_TAG_AND_CONTENTS_IN_
CALLBACK

0x41

EZSP_MESSAGE_CONTENTS_IN_CALLBACK_POLICY
decision. Include both the message tag and the
message contents in unicastSent and messageSent
callbacks.

SN260 EmberZNet serial protocol

 45/88

Table 30. EmberStatus

Structure Field Description

EMBER_SUCCESS 0x00 Generic 'no error' message.

EMBER_ERR_FATAL 0x01 Generic 'fatal error' message.

EMBER_EEPROM_MFG_STACK_VERSION_
MISMATCH

0x04
Manufacturing and stack token format in non-volatile
memory is different than what the stack expects
(returned at initialization).

EMBER_INCOMPATIBLE_STATIC_MEMORY_
DEFINITIONS

0x05
Static memory definitions in ember-static-memory.h are
incompatible with this stack version.

EMBER_EEPROM_MFG_VERSION_MISMATCH 0x06
Manufacturing token format in non-volatile memory is
different than what the stack expects (returned at
initialization).

EMBER_EEPROM_STACK_VERSION_
MISMATCH

0x07
Stack token format in non-volatile memory is different
than what the stack expects (returned at initialization).

EMBER_NO_BUFFERS 0x18 There are no more buffers.

EMBER_SERIAL_INVALID_BAUD_RATE 0x20 Specified an invalid baud rate.

EMBER_SERIAL_INVALID_PORT 0x21 Specified an invalid serial port.

EMBER_SERIAL_TX_OVERFLOW 0x22 Tried to send too much data.

EMBER_SERIAL_RX_OVERFLOW 0x23
There was not enough space to store a received
character and the character was dropped.

EMBER_SERIAL_RX_FRAME_ERROR 0x24 Detected a UART framing error.

EMBER_SERIAL_RX_PARITY_ERROR 0x25 Detected a UART parity error.

EMBER_SERIAL_RX_EMPTY 0x26 There is no received data to process.

EMBER_SERIAL_RX_OVERRUN_ERROR 0x27
Receive interrupt was not handled in time, and a
character was dropped.

EMBER_MAC_TRANSMIT_QUEUE_FULL 0x39 MAC transmit queue is full.

EMBER_MAC_UNKNOWN_HEADER_TYPE 0x3A MAC header FCR error on receive.

EMBER_MAC_SCANNING 0x3D MAC can't complete this task because it is scanning.

EMBER_MAC_NO_DATA 0x31 No pending data exists for device doing a data poll.

EMBER_MAC_JOINED_NETWORK 0x32 Attempt to scan when we are joined to a network.

EMBER_MAC_BAD_SCAN_DURATION 0x33
Scan duration must be 0 to 14 inclusive. Attempt was
made to scan with an incorrect duration value.

EMBER_MAC_INCORRECT_SCAN_TYPE 0x34 emberStartScan was called with an incorrect scan type.

EMBER_MAC_INVALID_CHANNEL_MASK 0x35
emberStartScan was called with an invalid channel
mask.

EMBER_MAC_COMMAND_TRANSMIT_
FAILURE

0x36
Failed to scan current channel because we were unable
to transmit the relevant MAC command.

EMBER_MAC_NO_ACK_RECEIVED 0x40
We expected to receive an ACK following the
transmission, but the MAC level ACK was never
received.

EMBER_MAC_INDIRECT_TIMEOUT 0x42 Indirect data message timed out before polled.

EmberZNet serial protocol SN260

46/88

EMBER_SIM_EEPROM_ERASE_PAGE_GREEN 0x43

Simulated EEPROM is telling the application that there is
at least one flash page to be erased. GREEN status
means the current page has not filled above the
ERASE_CRITICAL_THRESHOLD. The application should
call the function halSimEepromErasePage() when it
can to erase a page.

EMBER_SIM_EEPROM_ERASE_PAGE_RED 0x44

Simulated EEPROM is telling the application that there is
at least one flash page to be erased. RED status means
the current page has filled above the
ERASE_CRITICAL_THRESHOLD. Due to the shrinking
availability of write space, there is a danger of data loss.
The application must call the function
halSimEepromErasePage() as soon as possible to
erase a page.

EMBER_SIM_EEPROM_FULL 0x45

Simulated EEPROM has run out of room to write any
new data and the data trying to be set has been lost.
This error code is the result of ignoring the
SIM_EEPROM_ERASE_PAGE_RED error code. The
application must call the function
halSimEepromErasePage() to make room for any
further calls to set a token.

EMBER_SIM_EEPROM_FLASH_WRITE_
FAILED

0x46

A fatal error has occurred while trying to write data to the
Flash and the write verification has failed. The data in
the flash cannot be trusted after this error, and it is
possible this error is the result of exceeding the life
cycles of the flash.

EMBER_SIM_EEPROM_INIT_1_FAILED 0x47

Attempt 1 to initialize the simulated EEPROM has failed.
This failure means the information already stored in
Flash (or a lack thereof), is fatally incompatible with the
token information compiled into the code image being
run.

EMBER_SIM_EEPROM_INIT_2_FAILED 0x48

Attempt 2 to initialize the simulated EEPROM has failed.
This failure means Attempt 1 failed, and the token
system failed to properly reload default tokens and reset
the simulated EEPROM.

EMBER_SIM_EEPROM_INIT_3_FAILED 0x49

Attempt 3 to initialize the simulated EEPROM has failed.
This failure means one or both of the tokens
TOKEN_MFG_NVDATA_VERSION or
TOKEN_STACK_NVDATA_VERSION were incorrect and
the token system failed to properly reload default tokens
and reset the simulated EEPROM.

EMBER_ERR_TOKEN_UNKNOWN 0x4B An unknown flash token was specified.

EMBER_ERR_TOKEN_EXISTS 0x4C
Could not create new flash token because it already
exists.

EMBER_ERR_TOKEN_INVALID_SIZE 0x4D
An incorrect size was specified when retrieving token
data.

EMBER_ERR_TOKEN_READ_ONLY 0x4E Couldn't write token because it is marked read-only.

EMBER_ERR_BOOTLOADER_TRAP_
TABLE_BAD

0x58
Bootloader received an invalid message (failed attempt
to go into bootloader).

Table 30. EmberStatus (continued)

Structure Field Description

SN260 EmberZNet serial protocol

 47/88

EMBER_ERR_BOOTLOADER_TRAP_UNKNOWN 0x59
Bootloader received an invalid message (failed attempt
to go into bootloader).

EMBER_ERR_BOOTLOADER_NO_IMAGE 0x5A
Bootloader cannot complete the bootload operation
because either an image was not found or the image
exceeded memory bounds.

EMBER_TOO_MANY_CONNECTIONS 0x60
EMBER_TRANSPORT_CONNECTION_COUNT limit has
been reached.

EMBER_CONNECTION_OPEN 0x61 A connection has either been opened or is already open.

EMBER_CONNECTION_FAILED 0x63
A connection experienced a catastrophic error. The
connection is now closed and messages may have been
lost.

EMBER_CONNECTION_CLOSED 0x64 Transport layer successfully closed a connection.

EMBER_CONNECTION_CLOSING 0x65
Transport layer is in process of closing a connection
(waiting for a response from the remote device).

EMBER_DELIVERY_FAILED 0x66
Transport layer attempted to send or deliver a message,
but it failed.

EMBER_BINDING_INDEX_OUT_OF_RANGE 0x69
This binding index is out of range of the current binding
table.

EMBER_INVALID_BINDING_TERMINAL 0x6B
Could not set or find a binding index given the specified
terminal.

EMBER_INVALID_BINDING_INDEX 0x6C An invalid binding table index was given to a function.

EMBER_TERMINAL_HAS_MULTIPLE_
BINDINGS

0x6F
Multiple binding table entries were found for the specified
terminal.

EMBER_INVALID_CALL 0x70
API call is not allowed given the current state of the stack
(for example, opening a connection from a sleepy node.).

EMBER_COST_NOT_KNOWN 0x71 Link cost to a node is not known.

EMBER_MAX_MESSAGE_LIMIT_REACHED 0x72
Maximum number of in-flight messages (such as
EMBER_TRANSPORT_PACKET_COUNT) has been
reached.

EMBER_CONNECTION_NOT_YET_OPEN 0x73 A connection is not open yet.

EMBER_MESSAGE_TOO_LONG 0x74
Message to be transmitted is too big to fit into a single
over-the-air packet.

EMBER_BINDING_IS_ACTIVE 0x75
Application is trying to delete or overwrite a binding that
is in use.

EMBER_EUI64_NOT_AVAILABLE 0x76 EUI64 is not available in the current packet.

EMBER_INCOMING_SEQUENCED_MESSAGES
LOST

0x77 One or more sequenced messages failed to be received.

EMBER_ADC_CONVERSION_DONE 0x80 Conversion is complete.

EMBER_ADC_CONVERSION_BUSY 0x81
Conversion cannot be done because a request is being
processed.

EMBER_ADC_CONVERSION_DEFERRED 0x82
Conversion is deferred until the current request has been
processed.

EMBER_ADC_NO_CONVERSION_PENDING 0x84 No results are pending.

Table 30. EmberStatus (continued)

Structure Field Description

EmberZNet serial protocol SN260

48/88

EMBER_SLEEP_INTERRUPTED 0x85
Sleeping (for a duration) has been abnormally
interrupted and exited prematurely.

EMBER_PHY_TX_UNDERFLOW 0x88 Transmit hardware buffer underflowed.

EMBER_PHY_TX_INCOMPLETE 0x89 Transmit hardware did not finish transmitting a packet.

EMBER_PHY_INVALID_CHANNEL 0x8A An unsupported channel setting was specified.

EMBER_PHY_INVALID_POWER 0x8B An unsupported power setting was specified.

EMBER_PHY_TX_BUSY 0x8C
Packet cannot be transmitted because the physical MAC
layer is currently transmitting a packet. (This is used for
the MAC backoff algorithm.)

EMBER_PHY_UNKNOWN_RADIO_TYPE 0x8D
The software installed on the hardware doesn't
recognize the hardware radio type.

EMBER_PHY_OSCILLATOR_CHECK_FAILED 0x8E
The software installed on the hardware doesn't
recognize the hardware radio type.

EMBER_PHY_PARTIAL_PACKET 0x8F
PHY did not receive the entire packet it was expecting
from the radio.

EMBER_NETWORK_UP 0x90
Stack software has completed initialization and is ready
to send and receive packets over the air.

EMBER_NETWORK_DOWN 0x91 Network is not operating.

EMBER_NETWORK_PENDING_ACTIVITY 0x92
Network has activity pending and should not be shut
down.

EMBER_NOT_JOINED 0x93 Node has not joined a network.

EMBER_JOIN_FAILED 0x94 An attempt to join a network failed.

EMBER_INVALID_SECURITY_LEVEL 0x95
The chosen security level (the value of
EMBER_SECURITY_LEVEL) is not supported by the
stack.

EMBER_MOVE_FAILED 0x96
After moving, a mobile node's attempt to re-establish
contact with the network failed.

EMBER_NETWORK_BUSY 0xA1
A message cannot be sent because the network is
currently overloaded.

EMBER_NODEID_INVALID 0xA2
A datagram was sent to a node and the EUI64 address
in the datagram did not match the node's EUI64
address. The NodeId was invalid.

EMBER_INVALID_ENDPOINT 0xA3
The application tried to send a message using an
endpoint that it has not defined.

EMBER_BINDING_HAS_CHANGED 0xA4
The application tried to use a binding that has been
remotely modified and the change has not yet been
reported to the application.

EMBER_STACK_AND_HARDWARE_MISMATCH 0xB0

A critical and fatal error indicating that the version of the
stack trying to run does not match with the chip it is
running on. The software (stack) on the chip must be
replaced with software that is compatible with the chip.

Table 30. EmberStatus (continued)

Structure Field Description

SN260 EmberZNet serial protocol

 49/88

Table 31. EmberEventUnits

Structure Field Description

EMBER_EVENT_INACTIVE 0x00 Event is not scheduled to run.

EMBER_EVENT_MS_TIME 0x01 Execution time is in approximate milliseconds.

EMBER_EVENT_QS_TIME 0x02
Execution time is in 'binary' quarter seconds (256
approximate milliseconds each).

EMBER_EVENT_MINUTE_TIME 0x03
Execution time is in 'binary' minutes (65536 approximate
milliseconds each).

Table 32. EmberNodeType

Structure Field Description

EMBER_COORDINATOR 0x01
Will relay messages and can act as a parent to other
nodes.

EMBER_ROUTER 0x02
Will relay messages and can act as a parent to other
nodes.

EMBER_END_DEVICE 0x03
Communicates only with its parent and will not relay
messages.

EMBER_SLEEPY_END_DEVICE 0x04
An end device whose radio can be turned off to save
power. The application must poll to receive messages.

EMBER_MOBILE_END_DEVICE 0x05 A sleepy end device that can move through the network.

Table 33. EmberNetworkStatus

Structure Field Description

EMBER_NO_NETWORK 0x00 The node is not associated with a network in any way.

EMBER_JOINING_NETWORK 0x01 The node is currently attempting to join a network.

EMBER_JOINED_NETWORK 0x02 The node is joined to a network.

EMBER_JOINED_NETWORK_NO_PARENT 0x03
The node is an end device joined to a network but its
parent is not responding.

EMBER_LEAVING_NETWORK 0x04 The node is in the process of leaving its current network.

Table 34. EmberIncomingMessageType

Structure Field Description

EMBER_INCOMING_DATAGRAM 0x00 Datagram.

EMBER_INCOMING_DATAGRAM_REPLY 0x01 Datagram reply.

EMBER_INCOMING_SEQUENCED 0x02 Sequenced message.

EMBER_INCOMING_MULTICAST 0x03 Multicast.

EMBER_INCOMING_SHARED_MULTICAST 0x04 Shared multicast.

EMBER_INCOMING_MULTICAST_LOOPBACK 0x05 Multicast loopback.

333EMBER_INCOMING_UNICAST 0x06 Unicast.

EMBER_INCOMING_BROADCAST 0x07 Broadcast.

EmberZNet serial protocol SN260

50/88

Table 35. EmberBindingType

Structure Field Description

EMBER_UNUSED_BINDING 0x00 A binding that is currently not in use.

EMBER_UNICAST_BINDING 0x01
A unicast binding whose 64-bit identifier is the
destination EUI64.

EMBER_AGGREGATION_BINDING 0x02
A unicast binding whose 64-bit identifier is the
aggregator EUI64.

EMBER_MULTICAST_BINDING 0x03

A multicast binding whose 64-bit identifier is the group
address. A multicast binding can be used to send
messages to the group and to receive messages sent to
the group.

Table 36. EmberUnicastOption

Structure Field Description

EMBER_UNICAST_OPTION_NONE 0x00 No options.

EMBER_UNICAST_OPTION_APS_INDIRECT 0x04 Reserved.

EMBER_UNICAST_OPTION_HAVE_SOURCE 0x10 Reserved.

EMBER_UNICAST_OPTION_APS_RETRY 0x40 Resend the message using the APS retry mechanism.

EMBER_UNICAST_OPTION_ENABLE_ROUTE
DISCOVERY

0x80
Causes a route discovery to be initiated if no route to the
destination is known.

EMBER_UNICAST_OPTION_FORCE_ROUTE_
DISCOVERY

0x20
Causes a route discovery to be initiated even if one is
known.

EMBER_UNICAST_OPTION_POLL_
RESPONSE

0x01 Reserved.

Table 37. EmberNetworkScanType

Structure Field Description

EMBER_ENERGY_SCAN 0x00 An energy scan scans each channel for its RSSI value.

EMBER_ACTIVE_SCAN 0x01
An active scan scans each channel for available
networks.

Table 38. EmberJoinDecision

Structure Field Description

EMBER_HAS_KEY 0x00 Allow the node to join. The node has the key.

EMBER_SEND_KEY 0x01 Allow the node to join. Send the key to the node.

EMBER_DENY_JOIN 0x02 Deny join.

EMBER_ASK_TRUST_CENTER 0x03 Ask the trust center.

SN260 EmberZNet serial protocol

 51/88

7.3.4 Configuration frames

Table 39. version

Name: version ID: 0x00

Description:
The command allows the Host to specify the desired EZSP version. This document describes version 1 of the
protocol. The response provides information about the firmware running on the SN260.

Command parameters:

int8u desiredProtocolVersion The EZSP version the Host wishes to use.

Response parameters:

int8u protocolVersion
The EZSP version the SN260 is using. If the SN260 does not support the
version requested by the Host, it will use the highest version it does
support.

int8u stackType
The type of stack running on the SN260. The available EZSP commands
and their parameters depend on the stack type. The mesh stack is type 2.

int16u stackVersion The version number of the stack.

Table 40. getConfigurationValue

Name: getConfigurationValue ID: 0x52

Description: Reads a configuration value from the SN260.

Command parameters:

EzspConfigId configId Identifies which configuration value to read.

Response parameters:

EzspConfigStatus status
EZSP_CONFIG_SUCCESS if the value was read successfully,
EZSP_CONFIG_INVALID_ID if the SN260 does not recognize configId.

int16u value The configuration value.

Table 41. setConfigurationValue

Name: setConfigurationValue ID: 0x53

Description:
Writes a configuration value to the SN260. Configuration values can be modified by the Host after the SN260 has
reset. After the stack status changes to EMBER_NETWORK_UP, configuration values can no longer be modified
and this command will respond with EZSP_CONFIG_INVALID_CALL.

Command parameters:

EzspConfigId configId Identifies which configuration value to change.

int16u value The new configuration value.

Response parameters:

EzspConfigStatus status

EZSP_CONFIG_SUCCESS if the configuration value was changed,
EZSP_CONFIG_OUT_OF_MEMORY if the new value exceeded the
available memory, EZSP_CONFIG_INVALID_VALUE if the new value was
out of bounds, EZSP_CONFIG_INVALID_ID if the SN260 does not
recognize configId, EZSP_CONFIG_INVALID_CALL if configuration
values can no longer be modified.

EmberZNet serial protocol SN260

52/88

Table 42. addEndpoint

Name: addEndpoint ID: 0x02

Description:
Configures endpoint information on the SN260. The SN260 does not remember these settings after a reset.
Endpoints can be added by the Host after the SN260 has reset. After the stack status changes to
EMBER_NETWORK_UP, endpoints can no longer be added and this command will respond with
EZSP_CONFIG_INVALID_CALL.

Command parameters:

int8u endpoint The application endpoint to be added.

int16u profileId The endpoint's application profile.

int16u deviceId The endpoint's device ID within the application profile.

int8u appFlags The device version and flags indicating description availability.

int8u inputClusterCount The number of input clusters.

int8u outputClusterCount The number of output clusters.

int8u[] inputClusterList Input cluster IDs the endpoint will accept.

int8u[] outputClusterList Output cluster IDs the endpoint may send.

Response parameters:

EzspConfigStatus status

EZSP_CONFIG_SUCCESS if the endpoint was added,
EZSP_CONFIG_OUT_OF_MEMORY if there is not enough memory
available to add the endpoint, EZSP_CONFIG_INVALID_VALUE if the
endpoint already exists, EZSP_CONFIG_INVALID_CALL if endpoints can
no longer be added.

Table 43. setPolicy

Name: setPolicy ID: 0x55

Description: Allows the Host to change the policies used by the SN260 to make fast decisions.

Command parameters:

EzspPolicyId policyId Identifies which policy to modify.

EzspDecisionId decisionId The new decision for the specified policy.

Response parameters:

EzspConfigStatus status
EZSP_CONFIG_SUCCESS if the policy was changed,
EZSP_CONFIG_INVALID_ID if the SN260 does not recognize
policyId.

Table 44. getPolicy

Name: getPolicy ID: 0x56

Description: Allows the Host to read the policies used by the SN260 to make fast decisions.

Command parameters:

EzspPolicyId policyId Identifies which policy to read.

SN260 EmberZNet serial protocol

 53/88

7.3.5 Utilities frames

Response parameters:

EzspConfigStatus status
EZSP_CONFIG_SUCCESS if the policy was read successfully,
EZSP_CONFIG_INVALID_ID if the SN260 does not recognize
policyId.

EzspDecisionId decisionId The current decision for the specified policy.

Table 44. getPolicy (continued)

Table 45. nop

Name: nop ID: 0x05

Description:
A transaction which does nothing. The Host can use this to set the sleep mode or to check the status of the SN260.

Command parameters: None

Response parameters: None

Table 46. invalidCommand

Name: invalidCommand ID: 0x58

Description: Indicates that the SN260 received a command containing an unsupported frame ID.

This frame is a response to an invalid command.

Response parameters: None

Table 47. callback

Name: callback ID: 0x06

Description: Allows the SN260 to respond with a pending callback.

Command parameters: None

The response to this command can be any of the callback responses.

Table 48. noCallbacks

Name: noCallbacks ID: 0x07

Description: Indicates that there are currently no pending callbacks.

This frame is a response to the callback command.

Response parameters: None

Table 49. reset

Name: reset ID: 0x08

Description: Allows the Host to reset the SN260.

Command parameters: None

Response parameters: None

EmberZNet serial protocol SN260

54/88

Table 50. setToken

Name: setToken ID: 0x09

Description: Sets a token (8 bytes of non-volatile storage) in the simulated EEPROM of the SN260.

Command parameters:

int8u tokenId Which token to set (0 to 7).

int8u[8] tokenData The data to write to the token.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 51. getToken

Name: getToken ID: 0x0A

Description: Retrieves a token (8 bytes of non-volatile storage) from the simulated EEPROM of the SN260.

Command parameters:

int8u tokenId Which token to read (0 to 7).

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

int8u[8] tokenData The contents of the token.

Table 52. getMfgToken

Name: getMfgToken ID: 0x0B

Description:
Retrieves a manufacturing token (8 bytes of non-volatile storage) from the Flash Information Area of the SN260.

Command parameters:

int8u tokenId Which manufacturing token to read (0 to 7).

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

int8u[8] tokenData The contents of the manufacturing token.

Table 53. setRam

Name: setRam ID: 0x46

Description:
Writes data supplied by the Host to RAM in the SN260. The amount of RAM available for use by the Host must be
set using the setConfigurationValue command.

parameters

int8u startIndex The location to start writing the data.

int8u dataLength The length of the data parameter in bytes.

int8u[] data The data to write to RAM.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

SN260 EmberZNet serial protocol

 55/88

Table 54. getRam

Name: getRam ID: 0x47

Description: Reads data from RAM in the SN260 and returns it to the Host.

Command parameters:

int8u startIndex The location to start reading the data.

int8u length The number of bytes to read.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

int8u dataLength The length of the data parameter in bytes.

int8u[] data The data read from RAM.

Table 55. getRandomNumber

Name: getRandomNumber ID: 0x49

Description: Returns a random number, generated using noise from the radio.

Command parameters: None

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

int16u value If status is EMBER_SUCCESS, a random number. Otherwise, zero.

Table 56. getMillisecondTime

Name: getMillisecondTime ID: 0x0D

Description: Returns the current time in milliseconds according to the SN260's internal clock.

Command parameters: None

Response parameters:

int32u time The current time in milliseconds.

Table 57. setTimer

Name: setTimer ID: 0x0E

Description: Sets a timer on the SN260. There are 2 independent timers available for use by the Host. A timer can
be cancelled by setting time to 0 or units to EMBER_EVENT_INACTIVE.

Command parameters:

int8u timerId Which timer to set (0 or 1).

int16u time

The delay before the timerHandler callback will be generated. Note that
the timer clock is free running and is not synchronized with this command.
This means that the actual delay will be between time and (time - 1).
The maximum delay is 32767.

EmberEventUnits units The units for time.

boolean repeat
If true, a timerHandler callback will be generated repeatedly. If false,
only a single timerHandler callback will be generated.

EmberZNet serial protocol SN260

56/88

Response parameters

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 57. setTimer (continued)

Table 58. getTimer

Name: getTimer ID: 0x4E

Description: Gets information about a timer. The Host can use this command to find out how much longer it will be
before a previously set timer will generate a callback.

Command parameters:

int8u timerId Which timer to get information about (0 or 1).

Response parameters:

int16u time The delay before the timerHandler callback will be generated.

EmberEventUnits units The units for time.

boolean repeat
True if a timerHandler callback will be generated repeatedly. False if
only a single timerHandler callback will be generated.

Table 59. timerHandler

Name: timerHandler ID: 0x0F

Description: A callback from the timer.

This frame is a response to the callback command.

Response parameters:

int8u timerId Which timer generated the callback (0 or 1).

Table 60. serialWrite

Name: serialWrite ID: 0x10

Description: Sends a serial message from the Host to the InSight debug system via the SN260.

Command parameters:

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The serial message.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

SN260 EmberZNet serial protocol

 57/88

7.3.6 Networking frames

Table 61. serialRead

Name: serialRead ID: 0x11

Description: Allows the Host to read a serial message from the InSight debug system via the SN260.

Command parameters:

int8u length The maximum number of bytes to read.

Response parameters:

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The serial message.

Table 62. debugWrite

Name: debugWrite ID: 0x12

Description: Sends a debug message from the Host to the InSight debug system via the SN260.

Command parameters:

boolean binaryMessage
TRUE if the message should be interpreted as binary data, FALSE if the
message should be interpreted as ASCII text.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The binary message.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 63. debugHandler

Name: debugHandler ID: 0x13

Description: Delivers a binary message from the InSight debug system to the Host via the SN260.

This frame is a response to the callback command.

Response parameters:

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The binary message.

Table 64. setEncryptionKey

Name: setEncryptionKey ID: 0x14

Description:
Sets the encryption key used to encrypt and decrypt radio messages. This function does not work if the stack is
already associated with a network.

Command parameters:

int8u[16] key A pointer to a 16-byte encryption key.

int8u keySequenceNumber The sequence number associated with this key.

EmberZNet serial protocol SN260

58/88

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 64. setEncryptionKey (continued)

Table 65. setManufacturerCode

Name: setManufacturerCode ID: 0x15

Description:
Sets the manufacturer code to the specified value. The manufacturer code is one of the fields of the node
descriptor.

Command parameters:

int16u code The manufacturer code for the local node.

Response parameters: None

Table 66. setPowerDescriptor

Name: setPowerDescriptor ID: 0x16

Description:
Sets the power descriptor to the specified value. The power descriptor is a dynamic value, therefore you should call
this function whenever the value changes.

Command parameters:

int16u descriptor The new power descriptor for the local node.

Response parameters: None

Table 67. networkInit

Name: networkInit ID: 0x17

Description:
Resume network operation after a reboot. The node retains its original type. This should be called on startup
whether or not the node was previously part of a network. EMBER_NOT_JOINED is returned if the node is not part
of a network.

Command parameters: None

Response parameters:

EmberStatus status
An EmberStatus value that indicates one of the following: successful
initialization, EMBER_NOT_JOINED if the node is not part of a network, or
the reason for failure.

Table 68. networkState

Name: networkState ID: 0x18

Description: Returns a value indicating whether the node is joining, joined to, or leaving a network.

Command parameters: None

Response parameters:

EmberNetworkStatus status An EmberNetworkStatus value indicating the current join status.

SN260 EmberZNet serial protocol

 59/88

Table 69. stackStatusHandler

Name: stackStatusHandler ID: 0x19

Description:
A callback invoked when the status of the stack changes. If the status parameter equals EMBER_NETWORK_UP,
then the getNetworkParameters command can be called to obtain the new network parameters. If any of the
parameters are being stored in nonvolatile memory by the Host, the stored values should be updated.

This frame is a response to the callback command.

Response parameters:

EmberStatus status
Stack status. One of the following: EMBER_NETWORK_UP,
EMBER_NETWORK_DOWN, EMBER_JOIN_FAILED,
EMBER_MOVE_FAILED

Table 70. startScan

Name: startScan ID: 0x1A

Description: This function will start a scan.

Command parameters:

EmberNetworkScanType scanType
Indicates the type of scan to be performed. Possible values:
EMBER_ENERGY_SCAN, EMBER_ACTIVE_SCAN.

int32u channelMask

Bits set as 1 indicate that this particular channel should be scanned. Bits
set to 0 indicate that this particular channel should not be scanned. For
example, a channelMask value of 0x00000001 would indicate that only
channel 0 should be scanned. Valid channels range from 11 to 26 inclusive.
This translates to a channel mask value of 0x07FFF800.

int8u duration
Sets the exponent of the number of scan periods, where a scan period is
960 symbols. The scan will occur for ((2^duration) + 1) scan periods.

Response parameters:

EmberStatus status

EMBER_SUCCESS signals that the scan successfully started. Possible
error responses and their meanings: EMBER_MAC_SCANNING, we are
already scanning; EMBER_MAC_JOINED_NETWORK, we are currently
joined to a network and can not begin a scan;
EMBER_MAC_BAD_SCAN_DURATION, we have set a duration value that
is not 0..14 inclusive; EMBER_MAC_INCORRECT_SCAN_TYPE, we have
requested an undefined scanning type;
EMBER_MAC_INVALID_CHANNEL_MASK, our channel mask did not
specify any valid channels.

Table 71. energyScanResultHandler

Name: energyScanResultHandler ID: 0x48

Description:
Reports the result of an energy scan for a single channel. The scan is not complete until the
scanCompleteHandler callback is called.

This frame is a response to the callback command.

Response parameters:

int8u channel The 802.15.4 channel number that was scanned.

int8u maxRssiValue The maximum RSSI value found on the channel.

EmberZNet serial protocol SN260

60/88

Table 72. networkFoundHandler

Name: networkFoundHandler ID: 0x1B

Description:
Reports that a network was found, and gives the network parameters useful for deciding which network to join.

This frame is a response to the callback command.

Response parameters:

int8u channel The 802.15.4 channel number on which the current network was found.

int16u panId The PAN ID of the current network.

boolean expectingJoin
Whether the node that generated this beacon is allowing additional children
to join to its network.

int8u stackProfile The ZigBee profile number of the current network.

Table 73. scanCompleteHandler

Name: scanCompleteHandler ID: 0x1C

Description: Returns the status of the current scan. EMBER_SUCCESS signals that the scan has completed.
Other error conditions signify a failure to scan on the channel specified.

This frame is a response to the callback command.

Response parameters:

int8u channel
The channel on which the current error occurred. Undefined for the case of
EMBER_SUCCESS.

EmberStatus status
The error condition that occurred on the current channel. Value will be
EMBER_SUCCESS when the scan has completed.

Table 74. stopScan

Name: stopScan ID: 0x1D

Description: Terminates a scan in progress.

Command parameters: None

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 75. formNetwork

Name: formNetwork ID: 0x1E

Description: Forms a new network by becoming the coordinator.

Command parameters:

EmberNetworkParameters Specification of the new network.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

SN260 EmberZNet serial protocol

 61/88

Table 76. joinNetwork

Name: joinNetwork ID: 0x1F

Description:
Causes the stack to associate with the network using the specified network parameters. It can take several seconds
for the stack to associate with the local network. Do not send messages until the stackStatusHandler callback
informs you that the stack is up.

Command parameters:

EmberNodeType nodeType
Specification of the role that this node will have in the network. This role
must not be EMBER_COORDINATOR. To be a coordinator, use the
formNetwork command.

EmberNetworkParameters Specification of the network with which the node should associate.

boolean joinSecurely

If true, the node uses the current key to secure messages during the joining
process. The proper value for secured networks depends upon their
configuration. Some networks use unsecured joining and distribute the key
from the coordinator. Other networks require secure joining and accept only
nodes that know the correct key. This value has no effect if the security
level is 0.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 77. scanAndFormNetwork

Name: scanAndFormNetwork ID: 0x4F

Description:
Scan for an available channel and PAN ID then form a network. This performs the following actions: 1. Performs an
energy scan on the indicated channels and randomly chooses one from amongst those with the least average
energy. 2. Randomly picks a PAN ID that does not appear during an active scan on the chosen channel. 3. Forms a
network using the chosen channel and PAN ID. If any errors occur the status code is passed to the
scanErrorHandler callback and no network is formed. Success is indicated when the stackStatusHandler
callback is invoked with the EMBER_NETWORK_UP status value.

Command parameters:

int32u channelMask

Bits set as 1 indicate that this particular channel should be scanned. Bits
set to 0 indicate that this particular channel should not be scanned. For
example, a channelMask value of 0x00000001 would indicate that only
channel 0 should be scanned. Valid channels range from 11 to 26 inclusive.
This translates to a channel mask value of 0x07FFF800.

int8s radioTxPower A power setting, in dBm.

Response parameters: None

Table 78. scanAndJoinNetwork

Name: scanAndJoinNetwork ID: 0x50

Description: Scan and join a network. This performs the following actions: 1. Does an active scan to find a network
that uses our stack profile and currently allows new nodes to join. 2. Joins the chosen network. If any errors occur
the status code is passed to the scanErrorHandler callback and no network is joined. Success is indicated
when the stackStatusHandler callback is invoked with the EMBER_NETWORK_UP status value.

EmberZNet serial protocol SN260

62/88

Command parameters:

EmberNodeType nodeType
Specification of the role that this node will have in the network. This role
must not be EMBER_COORDINATOR. To be a coordinator, use the
scanAndformNetwork command.

int32u channelMask

Bits set as 1 indicate that this particular channel should be scanned. Bits
set to 0 indicate that this particular channel should not be scanned. For
example, a channelMask value of 0x00000001 would indicate that only
channel 0 should be scanned. Valid channels range from 11 to 26 inclusive.
This translates to a channel mask value of 0x07FFF800.

int8s radioTxPower A power setting, in dBm.

boolean joinSecurely

If true, the node uses the current key to secure messages during the joining
process. The proper value for secured networks depends upon their
configuration. Some networks use unsecured joining and distribute the key
from the coordinator. Other networks require secure joining and accept only
nodes that know the correct key. This value has no effect if the security
level is 0.

Response parameters: None

Table 78. scanAndJoinNetwork (continued)

Table 79. scanErrorHandler

Name: scanErrorHandler ID: 0x51

Description: This callback is invoked if an error occurs while attempting to scanAndFormNetwork or
scanAndJoinNetwork.

This frame is a response to the callback command.

Response parameters:

EmberStatus status
An EmberStatus value indicating the reason for the scanAndFormNetwork
or scanAndJoinNetwork failure.

Table 80. leaveNetwork

Name: leaveNetwork ID: 0x20

Description: Causes the stack to leave the current network. This generates a stackStatusHandler callback to
indicate that the network is down. The radio will not be used until after sending a formNetwork or joinNetwork
command.

Command parameters: None

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 81. mobileNodeHasMoved

Name: mobileNodeHasMoved ID: 0x21

Description:
Informs the stack that contact with the network has been lost. Only devices that are joined to a network with a node
type of EMBER_MOBILE_END_DEVICE may call this function. This generates a stackStatusHandler callback
to indicate that the network is down. The stack will try to re-establish contact with the network. A second
stackStatusHandler callback indicates either the success or the failure of the attempt.

Command parameters: None

SN260 EmberZNet serial protocol

 63/88

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 81. mobileNodeHasMoved (continued)

Table 82. permitJoining

Name: permitJoining ID: 0x22

Description:
Tells the stack to allow other nodes to join the network with this node as their parent. Joining is initially disabled by
default.

Command parameters:

int8u duration
A value of 0x00 disables joining. A value of 0xFF enables joining. Any other
value enables joining for that number of seconds.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 83. childJoinHandler

Name: childJoinHandler ID: 0x23

Description: Indicates that a child has joined or left.

This frame is a response to the callback command.

Response parameters:

int8u index The index of the child of interest.

boolean joining True if the child is joining. False the child is leaving.

EmberNodeId childId The node ID of the child.

EmberEUI64 childEui64 The EUI64 of the child.

EmberNodeType childType The node type of the child.

Table 84. trustCenterJoinHandler

Name: trustCenterJoinHandler ID: 0x24

Description:
The SN260 used the trust center behavior policy to decide whether to allow a new node to join the network. The
Host cannot change the current decision, but it can change the policy for future decisions using the setPolicy
command.

This frame is a response to the callback command.

Response parameters:

EmberEUI64 newNode The EUI64 of the node that wished to join.

boolean securedJoin True if the node was joining securely using the network security key.

EmberJoinDecision policyDecision An EmberJoinDecision reflecting the decision made.

EmberZNet serial protocol SN260

64/88

Table 85. sendDiscoveryInformationToParent

Name:
sendDiscoveryInformationToParent

ID: 0x25

Description:
Initiates the upload of discovery information to the parent of this node. Only devices that are joined to a network
with a node type of EMBER_SLEEPY_END_DEVICE may call this function. The parent stores the information in its
discovery cache. The information is sent using ZDO messages with cluster IDs
NODE_DESCRIPTOR_RESPONSE, POWER_DESCRIPTOR_RESPONSE and
SIMPLE_DESCRIPTOR_RESPONSE.

Command parameters: None

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 86. getEui64

Name: getEui64 ID: 0x26

Description: Returns the EUI64 ID of the local node.

Command parameters: None

Response parameters:

EmberEUI64 eui64 The 64-bit ID.

Table 87. getNodeId

Name: getNodeId ID: 0x27

Description: Returns the 16-bit node ID of the local node.

Command parameters: None

Response parameters:

EmberNodeId nodeId The 16-bit ID.

Table 88. getNetworkParameters

Name: getNetworkParameters ID: 0x28

Description: Returns the current network parameters.

Command parameters: None

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

EmberNodeType nodeType An EmberNodeType value indicating the current node type.

EmberNetworkParameters The current network parameters.

Table 89. getParentChildParameters

Name: getParentChildParameters ID: 0x29

Description: Returns information about the children of the local node and the parent of the local node.

Command parameters: None

SN260 EmberZNet serial protocol

 65/88

7.3.7 Binding frames

Response parameters:

int8u childCount The number of children the node currently has.

EmberEUI64 parentEui64
The parent's EUI64. The value is undefined for nodes without parents
(coordinators and nodes that are not joined to a network).

EmberNodeId parentNodeId
The parent's node ID. The value is undefined for nodes without parents
(coordinators and nodes that are not joined to a network).

Table 89. getParentChildParameters (continued)

Table 90. getChildData

Name: getChildData ID: 0x4A

Description: Returns information about a child of the local node.

Command parameters:

int8u index
The index of the child of interest in the child table. Possible indexes range
from zero to EMBER_CHILD_TABLE_SIZE.

Response parameters:

EmberStatus status
EMBER_SUCCESS if there is a child at index. EMBER_NOT_JOINED if
there is no child at index.

EmberNodeId childId The node ID of the child.

EmberEUI64 childEui64 The EUI64 of the child.

EmberNodeType childType The EmberNodeType value for the child.

Table 91. clearBindingTable

Name: clearBindingTable ID: 0x2A

Description: Deletes all binding table entries.

Command parameters: None

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 92. setBinding

Name: setBinding ID: 0x2B

Description: Sets an entry in the binding table.

Command parameters:

int8u index The index of a binding table entry.

EmberBindingTableEntry value The contents of the binding entry.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

EmberZNet serial protocol SN260

66/88

 getBinding

Table 93. getBinding

Name: getBinding ID: 0x2C

Description: Gets an entry from the binding table.

Command parameters:

int8u index The index of a binding table entry.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

EmberBindingTableEntry value The contents of the binding entry.

Table 94. deleteBinding

Name: deleteBinding ID: 0x2D

Description: Deletes a binding table entry.

Command parameters:

int8u index The index of a binding table entry.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 95. bindingIsActive

Name: bindingIsActive ID: 0x2E

Description:
Indicates whether a binding table entry is active—that is, whether a connection to it is open or any messages are en
route from it. Note that this command does not indicate whether a binding is clear. To determine whether a binding
is clear, check whether the type field of the EmberBindingTableEntry has the value EMBER_UNUSED_BINDING.

Command parameters:

int8u index The index of a binding table entry.

Response parameters:

boolean active
True if the binding table entry is active. False if the binding table entry is not
active.

Table 96. getBindingDestinationNodeId

Name:
getBindingDestinationNodeId

ID: 0x2F

Description:
Returns the node ID for the binding's destination, if the ID is known. If a message is sent using the binding and the
destination's ID is not known, the stack will discover the ID by broadcasting a ZDO address request. The application
can avoid the need for this discovery by using setBindingDestinationNodeId when it knows the correct ID via
some other means. The destination's node ID is forgotten when the binding is changed, when the local node
reboots or, much more rarely, when the destination node changes its ID in response to an ID conflict.

Command parameters:

int8u index The index of a binding table entry.

SN260 EmberZNet serial protocol

 67/88

Response parameters:

EmberNodeId nodeId
The short ID of the destination node or EMBER_NULL_NODE_ID if no
destination is known.

Table 96. getBindingDestinationNodeId (continued)

Table 97. setBindingDestinationNodeId

Name:
setBindingDestinationNodeId

ID: 0x30

Description: Set the node ID for the binding's destination. See getBindingDestinationNodeId for a
description.

Command parameters:

int8u index The index of a binding table entry.

EmberNodeId nodeId The short ID of the destination node.

Response parameters: None

Table 98. remoteSetBindingHandler

Name: remoteSetBindingHandler ID: 0x31

Description:
The SN260 used the external binding modification policy to decide how to handle a remote set binding request. The
Host cannot change the current decision, but it can change the policy for future decisions using the setPolicy
command.

This frame is a response to the callback command.

Response parameters:

EmberBindingTableEntry entry The requested binding.

int8u index The index at which the binding was added.

EmberStatus policyDecision
EMBER_SUCCESS if the binding was added to the table and any other
status if not.

Table 99. remoteDeleteBindingHandler

Name:
remoteDeleteBindingHandler

ID: 0x32

Description:
The SN260 used the external binding modification policy to decide how to handle a remote delete binding request.
The Host cannot change the current decision, but it can change the policy for future decisions using the
setPolicy command.

This frame is a response to the callback command.

Response parameters:

int8u index The index of the binding whose deletion was requested.

EmberStatus policyDecision
EMBER_SUCCESS if the binding was removed from the table and any
other status if not.

EmberZNet serial protocol SN260

68/88

7.3.8 Messaging frames

Table 100. maximumPayloadLength

Name: maximumPayloadLength ID: 0x33

Command parameters: None

Response parameters:

int8u apsLength The maximum APS payload length.

int8u transportLength The maximum transport payload length.

Table 101. sendUnicast

Name: sendUnicast ID: 0x34

Description:
Sends a unicast message as per the ZigBee specification. The message will arrive at its destination only if there is
a known route to the destination node. Setting the ENABLE_ROUTE_DISCOVERY option will cause a route to be
discovered if none is known. Setting the FORCE_ROUTE_DISCOVERY option will force route discovery. Routes to
end-device children of the local node are always known. Setting the APS_RETRY option will cause the message to
be retransmitted until either a matching acknowledgement is received or three transmissions have been made. The
ZigBee APS retry mechanism does not use sequence numbers. If multiple messages are sent to the same
destination at the same time any acknowledgement from that node will stop transmission of all outstanding
messages.
Note: Using the FORCE_ROUTE_DISCOVERY option will cause the first transmission to be consumed by a route
request as part of discovery, so the application payload of this packet will not reach its destination on the first
attempt. If you want the packet to reach its destination, the APS_RETRY option must be set so that another attempt
is made to transmit the message with its application payload after the route has been constructed.

Command parameters:

EmberNodeId destination The node ID to which the message will be sent.

EmberApsFrame apsFrame The APS frame for the message.

int8u messageTag
A value chosen by the Host. This value is used in the emberUnicastSent
response to refer to this message.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The unicast message.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 102. unicastSent

Name: unicastSent ID: 0x35

Description:
A callback indicating the stack has completed sending a non-transport unicast message. Except for the status
value, the parameters are identical to those of the sendUnicast command used to send the message.

This frame is a response to the callback command.

Response parameters:

EmberNodeId destination The node ID to which the message was be sent.

EmberApsFrame apsFrame The APS frame for the message.

SN260 EmberZNet serial protocol

 69/88

int8u messageTag The value supplied by the Host in the emberSendUnicast command.

EmberStatus status An EmberStatus value indicating success or the reason for failure.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents
The unicast message supplied by the Host. The message contents are only
included here if the decision for the messageContentsInCallback
policy is messageTagAndContentsInCallback.

Table 102. unicastSent (continued)

Table 103. sendBroadcast

Name: sendBroadcast ID: 0x36

Description: Sends a broadcast message as per the ZigBee specification.

Command parameters:

EmberApsFrame apsFrame The APS frame for the message.

int8u radius
The message will be delivered to all nodes within radius hops of the
sender. A radius of zero is converted to EMBER_MAX_HOPS.

int8u messageTag Reserved for future use. This value is ignored by the SN260.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The broadcast message.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 104. sendDatagram

Name: sendDatagram ID: 0x37

Description:
Sends a datagram to the node and endpoint specified in a binding table entry. The status of the delivery will be
reported by a messageSent callback.

Command parameters:

int8u bindingTableIndex The index of the binding table entry.

int8u clusterId The cluster ID to use.

int8u messageTag
A value chosen by the Host. This value is used in the
emberCancelMessage command and the emberMessageSent
response to refer to this message.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The datagram message.

EmberZNet serial protocol SN260

70/88

Response parameters:

EmberStatus status

An EmberStatus value. For any result other than EMBER_SUCCESS, the
message will not be sent.

EMBER_SUCCESS: The message has been submitted for transmission.
EMBER_INVALID_BINDING_INDEX: The bindingTableIndex refers to a
non-unicast binding. EMBER_NETWORK_DOWN: The node is not part of
a network.

EMBER_MESSAGE_TOO_LONG: The message is too large to fit in a
MAC layer frame.

EMBER_MAX_MESSAGE_LIMIT_REACHED: The
EMBER_TRANSPORT_PACKET_COUNT limit has been reached.

Table 104. sendDatagram (continued)

Table 105. sendMulticast

Name: sendMulticast ID: 0x38

Description:
Sends a multicast message to all endpoints that share a specific multicast ID and are within a specified number of
hops of the sender.

Command parameters:

int8u bindingTableIndex The index of the binding table entry specifying the multicast group.

int8u clusterId The cluster ID to use.

int8u messageTag Reserved for future use. This value is ignored by the SN260.

int8u hops
The message will be delivered to all nodes within this number of hops of
the sender. A value of zero is converted to EMBER_MAX_HOPS.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The multicast message.

Response parameters:

EmberStatus status

An EmberStatus value. For any result other than EMBER_SUCCESS, the
message will not be sent.
EMBER_SUCCESS: The message has been submitted for transmission.

EMBER_INVALID_BINDING_INDEX: The bindingTableIndex refers to a
non-multicast binding.

EMBER_NETWORK_DOWN: The node is not part of a network.

EMBER_MESSAGE_TOO_LONG: The message is too large to fit in a
MAC layer frame.

EMBER_NO_BUFFERS: The free packet buffer pool is empty.
EMBER_NETWORK_BUSY: Insufficient resources available in Network or
MAC layers to send message.

Table 106. sendReply

Name: sendReply ID: 0x39

Description: Sends a reply to a received datagram message. The incomingMessageHandler callback for the
datagram being replied to supplies the values for all the parameters except the reply itself.

Command parameters:

EmberNodeId sender Value supplied by incoming datagram.

SN260 EmberZNet serial protocol

 71/88

EmberApsFrame apsFrame Value supplied by incoming datagram.

int8u datagramReplyTag Value supplied by incoming datagram.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The reply message.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 106. sendReply (continued)

Table 107. openConnection

Name: openConnection ID: 0x3A

Description: Opens a sequenced connection to a node.

Command parameters:

int8u bindingTableIndex The index of the binding table entry to which a connection will be opened.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 108. connectionStatus

Name: connectionStatus ID: 0x3B

Description: Returns the connection status of a binding table entry.

Command parameters:

int8u bindingTableIndex The index of the binding table entry whose status is being queried.

Response parameters:

EmberStatus status

An EmberStatus value:

EMBER_CONNECTION_CLOSED: The connection is closed.

EMBER_CONNECTION_NOT_YET_OPEN: The connection is in the
process of being established.

EMBER_CONNECTION_OPEN: The connection is currently established.
EMBER_CONNECTION_CLOSING: The connection is in the process of
being closed.

Table 109. connectionStatusHandler

Name: connectionStatusHandler ID: 0x3C

Description: A callback indicating the status of a connection has changed.

This frame is a response to the callback command.

EmberZNet serial protocol SN260

72/88

Response parameters:

int8u bindingTableIndex The index of the binding table entry whose connection status has changed.

EmberStatus status

An EmberStatus value:

EMBER_CONNECTION_OPEN: A sequenced connection has
successfully been established for the binding. It may have been initiated
locally or remotely.

EMBER_CONNECTION_CLOSING: The sequenced connection for the
binding is being closed gracefully. The close may have been initiated locally
or remotely. As soon as the disposition of all in-flight messages has been
resolved the connection will be completely closed (and the
EMBER_CONNECTION_CLOSED status will be reported).

EMBER_CONNECTION_CLOSED: The sequenced connection has been
successfully closed. The disposition of every message sent over the
connection has already been reported (via the various callbacks). There
will be no further message related callbacks.

EMBER_CONNECTION_FAILED: The sequenced connection has been
closed unexpectedly. If there were messages in-flight their disposition will
never be known or reported via callbacks. This error may be reported
during the opening of a connection, while a connection is established or
during the closing of a connection.

EMBER_INCOMING_SEQUENCED_MESSAGES_LOST: One or more
sequenced messages have not been received on the connection and it has
been determined they will never be received.

Table 109. connectionStatusHandler (continued)

Table 110. sendSequenced

Name: sendSequenced ID: 0x3D

Description: Sends a sequenced message over the connection associated with a specified binding table entry.

command parameters:

int8u bindingTableIndex The index of the binding table entry specifying the message destination.

int8u clusterId The cluster ID to use.

int8u messageTag
A value chosen by the Host. This value is used in the
emberCancelMessage command and the emberMessageSent
response to refer to this message.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The sequenced message.

SN260 EmberZNet serial protocol

 73/88

Response parameters:

EmberStatus status

An EmberStatus value. For any result other than EMBER_SUCCESS, the
message will not be sent.

EMBER_SUCCESS: The message has been submitted for transmission.
EMBER_CONNECTION_CLOSED: The connection associated with
bindingTableIndex is either closed or in the process of closing.
EMBER_INVALID_BINDING_INDEX: The bindingTableIndex refers to a
non-unicast binding.
EMBER_NETWORK_DOWN: The node is not part of a network.

EMBER_MESSAGE_TOO_LONG: The message is too large to fit in a
MAC layer frame.

EMBER_MAX_MESSAGE_LIMIT_REACHED: Either the
EMBER_TRANSPORT_PACKET_COUNT limit has been reached or the
transmit window is full (i.e. there are already 8 sequenced messages in
flight on the connection).

Table 110. sendSequenced (continued)

Table 111. closeConnection

Name: closeConnection ID: 0x3E

Description:
Closes a connection. Any sequenced messages previously sent on the connection will be delivered before the
connection is closed. Similarly, all messages sent by the remote node before the connection close is initiated will be
received before the connection closes locally.

Command parameters:

int8u bindingTableIndex The index of the binding table entry whose connection is to be closed.

Response parameters:

EmberStatus status An EmberStatus value indicating success or the reason for failure.

Table 112. messageSent

Name: messageSent ID: 0x3F

Description:
A callback indicating the stack has completed sending a datagram or sequenced message.

This frame is a response to the callback command.

Response parameters:

int8u bindingTableIndex The index of the binding table entry to which the message was sent.

int8u clusterId The cluster ID that was used.

int8u messageTag
The value supplied by the Host in the emberSendDatagram or
emberSendSequenced command.

EmberStatus status
An EmberStatus value of EMBER_SUCCESS if an ACK was received
from the destination or EMBER_DELIVERY_FAILED if no ACK was
received.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents
The unicast message supplied by the Host. The message contents are
only included here if the decision for the messageContentsInCallback
policy is messageTagAndContentsInCallback.

EmberZNet serial protocol SN260

74/88

Table 113. cancelMessage

Name: cancelMessage ID: 0x40

Description: Cancels an outgoing message.

Command parameters:

int8u messageTag
The value supplied by the Host in the emberSendDatagram or
emberSendSequenced command.

Response parameters:

EmberStatus status Always returns EMBER_SUCCESS.

Table 114. createAggregationRoutes

Name: createAggregationRoutes ID: 0x41

Description:
Sends a route request that creates routes from every node in the network back to this node. This function should be
called by the application if it wishes to aggregate data from many nodes. The data sources will not have to discover
routes individually. Additionally, incoming data will set up temporary reverse routes that allow acknowledgement
messages to return without a route discovery. The temporary routes expire and become reusable after a single use,
or 10-20 seconds.

Command parameters: None

Response parameters:

EmberStatus status
EMBER_SUCCESS if the route request was successfully submitted to the
transmit queue, and EMBER_ERR_FATAL otherwise.

Table 115. pollForData

Name: pollForData ID: 0x42

Description: Periodically request any pending data from our parent. Setting interval to 0 or units to
EMBER_EVENT_INACTIVE will generate a single poll.

Command parameters:

int16u interval
The time between polls. Note that the timer clock is free running and is not
synchronized with this command. This means that the time will be between
interval and (interval - 1). The maximum interval is 32767.

EmberEventUnits units The units for interval.

int8u failureLimit

The number of poll failures that will be tolerated before a
pollCompleteHandler callback is generated. A value of zero will result
in a callback for every poll. Any status value apart from
EMBER_SUCCESS and EMBER_MAC_NO_DATA is counted as a failure.

Response parameters:

EmberStatus status The result of sending the first poll.

Table 116. pollCompleteHandler

Name: pollCompleteHandler ID: 0x43

Description: Indicates the result of a data poll to the parent of the local node.

This frame is a response to the callback command.

SN260 EmberZNet serial protocol

 75/88

Response parameters:

EmberStatus status

An EmberStatus value:
EMBER_SUCCESS: Data was received in response to the poll.

EMBER_MAC_NO_DATA: No data was pending.

EMBER_DELIVERY_FAILED: The poll message could not be sent.
EMBER_MAC_NO_ACK_RECEIVED: The poll message was sent but not
acknowledged by the parent.

Table 116. pollCompleteHandler (continued)

Table 117. pollHandler

Name: pollHandler ID: 0x44

Description: Indicates that the local node received a data poll from a child.

This frame is a response to the callback command.

Response parameters:

EmberNodeId childId The node ID of the child that is requesting data.

Table 118. incomingMessageHandler

Name: incomingMessageHandler ID: 0x45

Description: A callback indicating a message has been received.

This frame is a response to the callback command.

Response parameters:

EmberIncomingMessageType type

The type of the incoming message. One of the following:

EMBER_INCOMING_DATAGRAM,

EMBER_INCOMING_DATAGRAM_REPLY,
EMBER_INCOMING_SEQUENCED,

EMBER_INCOMING_MULTICAST,

EMBER_INCOMING_SHARED_MULTICAST,
EMBER_INCOMING_MULTICAST_LOOPBACK,

EMBER_INCOMING_UNICAST,

EMBER_INCOMING_BROADCAST

EmberApsFrame apsFrame The APS frame from the incoming message.

int8u lastHopLqi The link quality from the node that last relayed the message.

int8s lastHopRssi The energy level (in units of dBm) observed during the reception.

EmberNodeId sender The sender of the message.

int8u bindingIndex
The index of a binding that matches the message or 0xFF if there is no
matching binding.

int8u datagramReplyTag
If the incoming message is a datagram and the Host wishes to send a
reply, this value must be supplied to the emberSendReply command.

int8u messageLength The length of the messageContents parameter in bytes.

int8u[] messageContents The incoming message.

EmberZNet serial protocol SN260

76/88

7.3.9 Alphabetical list of frames

Table 119. Alphabetical list of frames

Frame Name ID

addEndpoint 0x02

bindingIsActive 0x2E

callback 0x06

cancelMessage 0x40

childJoinHandler 0x23

clearBindingTable 0x2A

closeConnection 0x3E

connectionStatus 0x3B

connectionStatusHandler 0x3C

createAggregationRoutes 0x41

debugHandler 0x13

debugWrite 0x12

deleteBinding 0x2D

energyScanResultHandler 0x48

formNetwork 0x1E

getBinding 0x2C

getBindingDestinationNodeId 0x2F

getChildData 0x4A

getConfigurationValue 0x52

getEui64 0x26

getMfgToken 0x0B

getMillisecondTime 0x0D

getNetworkParameters 0x28

getNodeId 0x27

getParentChildParameters 0x29

getPolicy 0x56

getRam 0x47

getRandomNumber 0x49

getTimer 0x4E

getToken 0x0A

incomingMessageHandler 0x45

invalidCommand 0x58

joinNetwork 0x1F

SN260 EmberZNet serial protocol

 77/88

leaveNetwork 0x20

maximumPayloadLength 0x33

messageSent 0x3F

mobileNodeHasMoved 0x21

networkFoundHandler 0x1B

networkInit 0x17

networkState 0x18

noCallbacks 0x07

nop 0x05

openConnection 0x3A

permitJoining 0x22

pollCompleteHandler 0x43

pollForData 0x42

pollHandler 0x44

remoteDeleteBindingHandler 0x32

remoteSetBindingHandler 0x31

reset 0x08

scanAndFormNetwork 0x4F

scanAndJoinNetwork 0x50

scanCompleteHandler 0x1C

scanErrorHandler 0x51

sendBroadcast 0x36

sendDatagram 0x37

sendDiscoveryInformationToParent 0x25

sendMulticast 0x38

sendReply 0x39

sendSequenced 0x3D

sendUnicast 0x34

serialRead 0x11

serialWrite 0x10

setBinding 0x2B

setBindingDestinationNodeId 0x30

setConfigurationValue 0x53

setEncryptionKey 0x14

setManufacturerCode 0x15

Table 119. Alphabetical list of frames (continued)

Frame Name ID

EmberZNet serial protocol SN260

78/88

7.4 Sample transactions
This section provides illustrations of the following sample transactions:

● Joining

● Binding

● Sending

● Receiving

7.4.1 Joining

1) frame control = 0x00 (command frame, don't sleep)
 joinNetwork command = 0x1F
 nodeType = 0x02 (EMBER_ROUTER)
 panId = 0x1234
 radioTxPower = 0xFF (-1)
 radioChannel = 0x0B (11)
 useKey = 0x00 (FALSE)

 HOST -> SN260: | 00 | 1F | 02 | 34 | 12 | FF | 0B | 00 |

 frame control = 0x80 (response frame, no overflow, not

truncated)
 joinNetwork response = 0x1F
 status = 0x00 (EMBER_SUCCESS)

 SN260 -> HOST: | 80 | 1F | 00 |

2) Host waits for callback signal while SN260 tries to join the
network.

setPolicy 0x55

setPowerDescriptor 0x16

setRam 0x46

setTimer 0x0E

setToken 0x09

stackStatusHandler 0x19

startScan 0x1A

stopScan 0x1D

timerHandler 0x0F

trustCenterJoinHandler 0x24

unicastSent 0x35

version 0x00

Table 119. Alphabetical list of frames (continued)

Frame Name ID

SN260 EmberZNet serial protocol

 79/88

3) frame control = 0x00 (command frame, don't sleep)
 callback command = 0x06

 HOST -> SN260: | 00 | 06 |

 frame control = 0x80 (response frame, no overflow,
not truncated)

 stackStatusHandler response = 0x19
 status = 0x90 (EMBER_NETWORK_UP)

 SN260 -> HOST: | 80 | 19 | 90 |

7.4.2 Binding

1) frame control = 0x00 (command frame, don't sleep)
 setBinding command = 0x2B
 index = 0x00
 type = 0x01 (EMBER_UNICAST_BINDING)
 local = 0x11
 remote = 0x12
 clusterId = 0x55
 identifier = 0x1122334455667788

 HOST -> SN260: | 00 | 2B | 00 | 01 | 11 | 12 | 55 | 88 | 77 | 66
| 55
 | 44 | 33 | 22 | 11 |

 frame control = 0x80 (response frame, no overflow, not
truncated)

 setBinding response = 0x2B
 status = 0x00 (EMBER_SUCCESS)

 SN260 -> HOST: | 80 | 2B | 00 |

7.4.3 Sending

1) frame control = 0x00 (command frame, don't sleep)
 sendDatagram command = 0x37
 bindingTableIndex = 0x00
 clusterId = 0x55
 messageTag = 0x01
 messageLength = 0x03
 messageContents = 0xE1, 0xE2, 0xE3

 HOST -> SN260: | 00 | 37 | 00 | 55 | 01 | 03 | E1 | E2 | E3 |

 frame control = 0x80 (response frame, no overflow, not
truncated)

 sendDatagram response = 0x37
 status = 0x00 (EMBER_SUCCESS)

 SN260 -> HOST: | 80 | 37 | 00 |

EmberZNet serial protocol SN260

80/88

2) Host waits for callback signal while SN260 tries to send the
message.

3) frame control = 0x00 (command frame, don't sleep)
 callback command = 0x06

 HOST -> SN260: | 00 | 06 |

 frame control = 0x80 (response frame, no overflow, not
truncated)
 messageSent response = 0x3F
 bindingTableIndex = 0x00
 clusterId = 0x55
 messageTag = 0x01
 status = 0x00 (EMBER_SUCCESS)

 SN260 -> HOST: | 80 | 3F | 00 | 55 | 01 | 00 |

7.4.4 Receiving

1) Host waits for callback signal after a message is received by
the SN260.

2) frame control = 0x00 (command frame, don't sleep)
 callback command = 0x06

 HOST -> SN260: | 00 | 06 |

 frame control = 0x80 (response frame, no
overflow, not truncated)

 incomingMessageHandler response = 0x45
 type = 0x00 (EMBER_INCOMING_DATAGRAM)
 profileId = 0xABCD
 clusterId = 0x55
 sourceEndpoint = 0x11
 destinationEndpoint = 0x12
 options = 0x00
 lastHopLqi = 0xF0
 lastHopRssi = 0xC4 (-60)
 sender = 0x0001
 bindingIndex = 0xFF
 datagramReplyTag = 0x01
 messageLength = 0x03
 messageContents = 0xE1, 0xE2, 0xE3

 SN260 -> HOST: | 80 | 45 | 00 | CD | AB | 55 | 11 | 12 | 00 | F0 | C4
 | 01 | 00 | FF | 01 | 03 | E1 | E2 | E3 |

SN260 SIF module programming and debug interface

 81/88

8 SIF module programming and debug interface

SIF is a synchronous serial interface developed by Cambridge Consultants Ltd. It is the
primary programming and debug interface of the SN260. Therefore, any design
implementing the SN260 should make the SIF signals readily available. The SIF module
allows external devices to read and write memory-mapped registers in real-time without
changing the functionality or timing of the XAP2b core. See the SN260 reference design for
details regarding the implementation of the SIF interface.Go to www.stmcu.com for details.

The SIF interface provides the following:

● IC production test (especially analog)

● PCB production test

● Firmware download

● Product control and characterization

The pins are:

● nSIF_LOAD

● SIF_CLK

● SIF_MOSI

● SIF_MISO

The maximum serial shift speed for the SIF interface is 48MHz. SIF interface accesses can
be initiated even when the chip is in idle, deep sleep, or power down modes. An edge on
nSIF_LOAD wakes the chip to allow SIF cycles.

Typical application SN260

82/88

9 Typical application

Figure 12 illustrates the typical application circuit for the SN260. This figure does not contain
all decoupling capacitance required by the SN260. The Balun provides the impedance
transformation from the antenna to the SN260 for both TX and RX modes. The harmonic
filter provides additional suppression of the second harmonic, which increases the margin
over the FCC limit. The 24MHz crystal with loading capacitors is required and provides the
high frequency source for the SN260. The RC debounce filter (R4 and C7) is suggested to
improve the noise immunity of the nRESET logic (Pin 11).

The SIF (nSIF_LOAD, SIF_MOSI, SIF_MISO, and SIF_CLK) and packet trace signals
(PTI_EN and PTI_TXD) should be brought out test points or, if space permits to a 10-pin,
dual row, 0.05-inch pitch header footprint. With a header populated, a direct connection to
the InSight Adapter is possible which enhances the debug capability of the SN260. For more
information, refer to www.stmcu.com.

Figure 12. Typical application circuit

Table 120 contains the bill of materials for the application circuit shown in Figure 12.

L1

R1

C4
C5X1

1.8V

C6

Programming and
Debug Interface (these
pins should be routed
to test points)

Serial Interface
(route to Host uP)

Route to LED
or leave unconnected

VDD_VCO

RF_P

VDD_RF

RF_N

RF_TX_ALT_P

RF_TX_ALT_N

VDD_IF

BIAS_R

VDD_PADSA

TX_ACTIVE

nSIF_LOAD

SIF_MOSI

SIF_MISO

SIF_CLK

nHOST_INT

RES

VDD_PADS

PTI_DATA

PTI_EN

nSSEL

G
N

D

V
D

D
_F

LA
S
H

S
D

B
G

LI
N

K
_A

C
TI

V
IT

Y

nW
A
K
E

V
D

D
_C

O
R

E

V
D

D
_S

Y
N

TH
_P

R
E

O
S
C

B

O
S
C

A

V
D

D
_2

4M
H

Z

S
C

LK

M
IS

O

M
O

S
I

nS
S
E
L_

IN
T

VD
D

_C
O

R
E

V
D

D
_P

A
D

S

nR
E
S
E
T

V
D

D
_P

A
D

S

V
R

E
G

_O
U

T

R
E
S

11 12 13 14 15 16 17 18 19 20

10

9

8

7

6

5

4

3

2

1

21

22

23

24

25

26

27

28

29

30

40 39 38 37 36 35 34 33 32 31

41
GND

EM260
U1

Ceramic
Balun (BLN1)

L2

C2

C1

C3

1.8V

Harmonic
Filter

R2

C7

R4

VDD_PADS
(2.1V to 3.6V)

R3

VDD_PADS
(2.1V to 3.6V)

SN260

SN260 Typical application

 83/88

Table 120. Bill of materials

Item Quantity Reference Description Manufacturer/Part No.

1 1 C2 Capacitor, 5pF, 50V, NPO, 0402

2 2 C1,C3 Capacitor, 0.5pF, 50V, NPO, 0402

3 4 C4,C5 Capacitor, 27pF, 50V, NPO, 0402

4 1 C6 Capacitor, 10µF, 10V, TANTALUM, 3216 (SIZE A)

5 1 C7 Capacitor, 10pF, 5V, NPO, 0402

6 1 L1 Inductor, 2.7nH, +/- 5%, 0603, multi-layer
MURATA

LQG18HN2N7

7 2 L2 Inductor, 3.3nH, +/- 5%, 0603, multi-layer
MURATA

LQG18HN3N3

8 1 R1 Resistor, 169 KΩ, 1%, 0402

9 1 R2 Resistor, 100 KΩ, 5% O402

10 1 R3 Resistor, 3.3 KΩ, 5% 0402

11 1 R4 Resistor, 10 KΩ, 5%, 0402

12 1 U1 SN260 single-chip Zigbee/802.15.4 solution
STMicroelectronics

SN260

13 1 X1
Crystal, 24.000MHz, +/- 10PPM tolerance, +/-
25PPM stability, 18pF, - 40°C to + 85°C

ILSI

ILCX08-JG5F18-24.000MHZ

14 1 BLN1 BALUN, ceramic
TDK

HHM1521

Mechanical details SN260

84/88

10 Mechanical details

The SN260 package is a plastic 40-pin QFN that is 6mm x 6mm x 0.9mm. A large ground
pad in the bottom center of the package forms an extra 41st pin. A number of thermal vias
should connect the SN260 decal center to a PCB ground plane. For more information, refer
to www.stmcu.com.

Figure 13 illustrates the package drawing.

Figure 13. Package drawing

Top View

Edge View

Sym. Minimum Nominal Maximum
A 0.85 1.90 1.0

Common Dimensions (mm)

Tolerances for
Form & PositionSym.

bbb
aaa

0.10
0.15

Notes

Notes
1. JEDEC ref MO-220
2. All dimensions are in millimeters
3. Pin 1 orientation identified by chamfer on corner of
exposed die pad.

4. Datum C and the seating plane are defined by the flat surface
of the metallised terminal

5. Dimension 'e' represents the terminal pitch
6. Dimension b applies to metallised terminal and is measured
1.25 to 1.30 mm from terminal tip.
7. Dimension L1 represents terminal pull back from package
edge. Where terminal pull back exists, only upper half of lead is

visible on package edge due to half etching of leadframe.
8. Package surface shall be matte finish , Ra 1.6 - 2.2
9. Package warp shall be 1. 150 maximum
10. Leadframe material is copper A194.
11. Coplanarity applies to the exposed pad as well as the
terminals.

Detail B

Bottom View

2x

2x

Nx

ccc 0.10

Detail A

Detail B

Detail A

Pin 1

EXPOSED
PAD

7

0.4000

0.4000

A1 0 1.02 1.05
A3 0.20 ref
D 5.90 6.11 6.10
D1 4.5 BSC
D2 4.21 4.31 4.41
E 5.91 6.10 6.10
E1
E2 4.21 4.31 4.41
L 0.35 0.41 1.45
L1 0.1
b 0.18 1.23 0.31
N 40
e 0.50
k 1.2
R b min / 2
T 0.15

R

4

6

3

D

E E1 E2

D1

D2
e

L

nx
k

Nx b

0.15 typ
T

0.
27

ty
p

L1A3

A1

4.5 BSC

SN260 Ordering information

 85/88

11 Ordering information

Use the following part numbers to order the SN260:

● SN260QT Reel, RoHS

● SN260Q Tray, RoHS

To order parts, contact your local STMicroelectronics sales representative, or go to our Web
site: www.st.com.

Abbreviations and acronyms SN260

86/88

12 Abbreviations and acronyms

Table 121. Abbreviations and acronyms

Acronym/abbreviation Meaning

ACR Adjacent Channel Rejection

AES Advanced Encryption Standard

CBC-MAC Cipher Block Chaining—Message Authentication Code

CCA Clear Channel Assessment

CCM Counter with CBC-MAC Mode for AES encryption

CCM* Improved Counter with CBC-MAC Mode for AES encryption

CSMA Carrier Sense Multiple Access

CTR Counter Mode

EEPROM Electrically Erasable Programmable Read Only Memory

ESD Electro Static Discharge

ESR Equivalent Series Resistance

FFD Full Function Device (ZigBee)

FIA Flash Information Area

GPIO General Purpose I/O (pins)

HF High Frequency (24MHz)

I2C Inter-Integrated Circuit bus

IDE Integrated Development Environment

IF Intermediate Frequency

IP3 Third order Intermodulation Product

ISR Interrupt Service Routine

kB Kilobyte

kbps kilobits/second

LF Low Frequency

LNA Low Noise Amplifier

LQI Link Quality Indicator

MAC Medium Access Control

MSL Moisture Sensitivity Level

Msps Mega samples per second

O-QPSK Offset-Quadrature Phase Shift Keying

PA Power Amplifier

PER Packet Error Rate

PHY Physical Layer

SN260 References

 87/88

13 References

● IEEE 802.15.4-2003 (standards.ieee.org/getieee802/download/802.15.4-2003.pdf)

● IEEE 802.11g (standards.ieee.org/getieee802/download/802.11g-2003.pdf)

● Bluetooth Specification v1.2 (www.bluetooth.org/spec)

● ZigBee Specification v1.1 (www.zigbee.org; document number 053474r07)

● ZigBee Security Services Specification v1.0 (www.zigbee.org; document number
03322r13)

14 Revision history

PLL Phase-Locked Loop

POR Power-On-Reset

PSD Power Spectral Density

PSRR Power Supply Rejection Ratio

PTI Packet Trace Interface

PWM Pulse Width Modulation

RoHS Restriction of Hazardous Substances

RSSI Receive Signal Strength Indicator

SFD Start Frame Delimiter

SIF Serial Interface

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

VCO Voltage Controlled Oscillator

VDD Voltage Supply

Table 121. Abbreviations and acronyms (continued)

Acronym/abbreviation Meaning

Table 122. Document revision history

Date Revision Changes

11-Dec-2006 1 Initial release.

3-Dec-2007 2 Document status promoted from Preliminary Data to Datasheet.

SN260

88/88

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

